
FORCE TABLE 

 

 
OBJECTIVE 

 To study vector addition by comparing the results of the 
experimental addition of several forces with the results of graphical 
constructions.  

 
EQUIPMENT 

Force table w/ pin, 3-pulleys, 3-weight hangers, masses, protractors. 

 
INTRODUCTION 

Notice that the rim of the force table is ruled in degrees and that 
there are clamps with pulleys that can be set at various angles 
around the table. Masses can be hung on cords that pass over the 
pulleys and connect to a small ring in the center of the table. The 
gravitational force on the masses (their weight) is applied to the 
ring by the cords passing over the pulleys. The pulleys can be 
repositioned around the force table and the masses changed until 
the system is balanced (i.e., in equilibrium). Then the angle 
between pulleys can be read directly from the calibrated table 
edge.  

 A pin is supplied with the table to hold the ring near the center of 
the table while different weights and angles are tried for balance. 
When the forces are in balance, the ring will be centered around 
the pin; a small displacement will result in the ring oscillating about 
but it will settle around the pin. In this state the pin can be removed 
and larger amplitude oscillations tried; the ring will come to rest 
over the position of the pin if the system is in equilibrium.  

 TWO VECTORS 

 1. Place two pulleys opposite each other at 37 and 217 degrees. 
Pin the ring to the center of the table. Load the two weight holders 
with unequal masses, to total 100 grams on one and 150 grams on 
the other. Be sure to include the mass of the holder. Notice that it is 
impossible to cause the ring to stay centered around the pin unless 
you use your hand to apply an additional force downward on the 
smaller mass.  

 2. Add to the 100 gram mass to equal the companion mass of 150 
grams. Notice now that the ring can be set in a stable position 



 

about the pin indicating a balance of forces. The two forces on the 
ring are equal in magnitude but opposite in direction.  

THREE VECTORS 
Symmetric Situation 

3. Position three pulleys such that they are 120 degrees apart.  The 
angles 0, 120, and 240 degrees work well for this.  With the ring 
pinned to the center place 150 grams on each holder.  This should 
be an equilibrium situation. When you think you have a balance, 
test it by removing the pin. Then lift the ring slightly and let go. It will 
oscillate and allow the weights to move. If you have achieved 
equilibrium, the ring should return to its position centered over the 
pin location. 

Error Analysis 

4. Choose one pulley and move it slightly away from its current 
position.  There is probably a small range of angles within which you 
can move the pulley without sensibly disturbing the equilibrium.  This 
range of angles represents your uncertainty in the true position of 
the pulley.  Record this range of angles as Δθ. 

5. Return the pulley to the centered position.  Now add a small 
amount of mass to the hanger.  At some added mass, the 
equilibrium will be disturbed.  The amount of mass added that 
causes this represents your uncertainty in the true magnitude of the 
force.  Record this mass as Δm. 

6.  There are two ways to represent the uncertainties in each force: 
graphically or via an equation.  Since you will be required to 
perform analysis in both situations, you will need to handle the 
uncertainties both ways. 

Graphical Error Analysis 

When you draw a vector, you use a length scale to determine the 
magnitude and a reference line to determine the angle.  Due to 
the uncertainties, each vector you draw should have a range of 
lengths and a sweep of angles.  Thus, the tip of the vector could fall 
within some "box" on your page.  An example should help make 
this clear. 

Suppose you are drawing a vector whose magnitude is assumed to 
be 150 units and direction is 0 degrees from the positive x-axis.  
Further, suppose the uncertainties in these measurements are 5 
units for the magnitude and 2 degrees for the direction.  You would 
draw this vector as shown below. 

 

 

 



   

   

The center arrow represents the measured vector (150 units at 0 
degrees).  The "box" surrounding the tip of the vector has the 
following properties: 

  

1. Its straight side length is 10 units (145 to 155). 

 2. The angle subtended by the box is 4 degrees (2 degrees 
above the vector and 2 degrees below it). 

The box gives the area where the true vector may lie.  When you 
draw vectors in this lab, you should use this method to determine 
the  

We will defer an explanation of the algebraic method to later in 
the lab. 

THREE VECTORS - NON-SYMMETRIC CASE 

 7.  Pin the ring to the center of the table. Place one pulley at 90 
degrees. Pass a string and weight hanger over this pulley with a 
total load of 90 grams. Position a second pulley at 0 degrees and a 
load of 120 grams. Place a third pulley at 217 degrees with a load 
of 150 grams.  This should put the three forces in equilibrium. Test 
the equilibrium via the method in step 3 to be certain.  These two 
forces at 90 and 0 degrees now represent the component 
resolution of the 150 grams of a force at 37 degrees. (Refer to the 
section with two vectors.)  Thus these two forces have the same 
effect as the force of 150 gram at 37 degrees.  

 8. Next, before you change the configuration, use a protractor 
and ruler to make a scale drawing of the force vector diagram 
representing equilibrium. Set the scale so that the diagram comes 
as close as possible to filling the page. Be sure to indicate the scale 
on your drawing. In most cases a scale of 1 cm = 20 g will be 
appropriate.  Include the uncertainties determined in the error 
analysis section above. 

 Draw each vector at the proper angle with lengths proportional to 
the forces (or mass). Since the force is just the product of the mass 
and the gravitational acceleration g, we may use the value of the 
masses to represent the forces and scale the drawing in terms of 
grams. Draw the vectors with the tail of each beginning at the 
origin of your coordinate system (which should be near the center 
of your paper).   

Graphical Addition of Three Vectors 

 Next add the force at 90 degrees to the force at 0 degrees by 
adding the two vectors together head to tail or by making the 
parallelogram and find the resultant. How does the resultant 
compare to the third force?   



 

 9. Draw a new vector diagram with all of the vectors aligned head 
to tail so that you will have a triangle that should close if the three 
forces are in equilibrium. Draw the vector at 0 degrees from the 
origin of your coordinate system.  Using the tip of this vector as a 
new origin, draw the vector pointing at 90 degrees.  Finally, using 
the tip of the second vector as a new origin, draw the third vector.  
Ideally, you should have a closed triangle with one corner on the 
true origin of your graph.  In reality, your triangle may fail to close.  If 
so, determine by what amount of force the triangle fails to close.  If 
this force fits into an uncertainty box, then you can claim that the 
triangle closes within the sensitivity of the experiment.  

Component Addition of Three Vectors 

10. Using trigonometry, calculate the x- and y-components of each 
of your vectors.  Record this information in a table.  Bear in mind 
that all angles must be measured from the same reference line 
(generally the positive x-axis).  The sum of the x-components should 
be zero, as should the sum of the y-components.  

 11. Repeat the procedure above with the 150 g mass moved to a 
position of 225 degrees. Adjust the masses at 0 and 90 degrees until 
you can achieve equilibrium. What did you find for the two 
masses?   

 12. Draw a vector diagram for the situation of step 11 in the 
manner that you drew the diagram in step 8. Also compute the 
components from trigonometry.  The sum of x- and y-components 
should be zero separately (as in step 10).  This time, however, you 
may not achieve this.  We must determine how the uncertainty in 
your measurements propagates to this sum before we can say 
anything about the validity of the experiment. 

You should have values for Δm and Δθ.  You want a value for the 
uncertainty in the sum of vector components.  If we represent the 
x-component uncertainty as Δx and the y-component uncertainty 
as Δy, and we know some rules of calculus we can determine how 
Δx and Δy depend on Δm and Δθ.  We will state the result, without 
proof. 

 

Δx = [(Δm*(sinΘ1+sinΘ2 +sinΘ3))2 +(ΔΘ*(m1cosΘ1+m2cosΘ2 +m3cosΘ3))2 ]
 

The subscripts 1, 2, and 3 refer to the three vectors.  The formula for 
Δy is similar with the roles of sine and cosine exchanged.  One 
important point is Δθ must be expressed in radians for this formula to 
be valid.  If your values for Δx and Δy exceed the absolute values of 
the sums of the x- and y-components, then you can claim the 
forces are in equilibrium.  Is this the case for your experiment? 



   

   

 13. Now choose three different masses, hang them on the weight 
hangers and adjust all of the angular positions until you reach an 
equilibrium. In this case you should not have any two pulleys 
making a 90 degree angle. Now make vector diagrams for this 
new situation as you did in both steps 8 and 9.   

 14. Calculate the x-components and determine if they sum to zero 
within the uncertainty.  Similarly, calculate the y-components and 
determine if they sum to zero within the uncertainty.   

QUESTIONS 

1. What does equilibrium mean?  What does it mean to resolve a 
vector into components? 

2. If the ring were stationary but not centered about the pin, would 
the forces be in equilibrium?  Why or why not? 

3. If the force table were moving with a constant velocity would 
the results of this lab be affected?  Explain. 

4. If the force table were accelerated horizontally would the results 
of this lab be affected?  Explain. 

 


