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Asymptotic-preserving schemes
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o Consider f, the solution of an equation with parameter ¢, and
f is the solution of the limiting equation as ¢ — 0.
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Asymptotic-preserving schemes
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o Consider f, the solution of an equation with parameter ¢, and
f is the solution of the limiting equation as ¢ — 0.

Example: Kinetic equations and hydrodynamic limits
1
Boltzmann equation: 0;f. + v - Vf. = =Bl[f, f].
€
e—0 |

Euler limit: Otp+ Vi - (pu) =0,
f=M(p,u,0) < 0(pu) + V- (pu® u+ pbl) =0,
Oe (3plul? + 2p0) + Vi - (3plulu+ 22 pfu) = 0.
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Asymptotic-preserving schemes

o Consider f, the solution of an equation with parameter ¢, and
f is the solution of the limiting equation as ¢ — 0.

o £/ and f" are approximations (discretizations) of ¢ and f.
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Asymptotic-preserving schemes
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o Consider f, the solution of an equation with parameter ¢, and
f is the solution of the limiting equation as ¢ — 0.

o £/ and f" are approximations (discretizations) of ¢ and f.
o Asymptotic-preserving property: h does not depend on e.

[Jin 99, .. ... .. ]
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When the limit is singular

o Consider the case when f is singular, e.g. f(t,x,v) = p(t,x)dy—y(t,x)-
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When the limit is singular

o Consider the case when f is singular, e.g. f(t,x,v) = p(t,x)dy—y(t,x)-

o The discretization f" can not high accuracy. Therefore, £ is also not
accurate when ¢ is small.
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When the limit is singular
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o Consider the case when f is singular, e.g. f(t,x,v) = p(t,x)dy—y(t,x)-

o The discretization f/ can not high accuracy. Therefore, £ is also not
accurate when ¢ is small.

o Idea: Construct a family of invertible maps 7¢, so that g. = T.f.
converges to a non-singular profile.
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When the limit is singular
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o Consider the case when f is singular, e.g. f(t,x,v) = p(t,x)dy—y(t,x)-

o The discretization f/ can not high accuracy. Therefore, £ is also not
accurate when ¢ is small.

o Idea: Construct a family of invertible maps 7¢, so that g. = T.f.
converges to a non-singular profile.

@ Main Difficulty: Find 7, that captures the singularity. @%ﬁﬁ'&&mw
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© Kinetic swarming models and zero-inertia limit
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Swarming

Three-zone models for swarms: [Reynolds '87]
o Long range:

@ Short range: Repulsion

o Middle range: Alignment
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Agent-based models on swarming

@ Agent-based interaction dynamics (based on Newton's second law)

X,'ZV,', m\'/,-:F,-, iZl,---,N.

@SOUIHCAROLINA

Changhui Tan (U of South Carolina) AP scheme with singular limit DASIV Spring School 8 /33



Agent-based models on swarming

@ Agent-based interaction dynamics (based on Newton's second law)
XI:VH va:FH I:].,,N

The interaction force F; depends on {XJ}JN:1 and {\/J}JN:1
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Agent-based models on swarming

@ Agent-based interaction dynamics (based on Newton's second law)
XI:VH va:FH I:].,,N

The interaction force F; depends on {XJ}JN:1 and {\/J}JN:1

e Attractive/Repulsive force: Fi(t) = —— Z VK (xi(t) — xi(t))-
J#f
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Agent-based models on swarming

@ Agent-based interaction dynamics (based on Newton's second law)
XI:VH va:FH I:].,,N

The interaction force F; depends on {XJ}JN:1 and {vj}j’\’:1

o Attractive/Repulsive force: Fi(t) = —— Z VK(x;(t) — xi(t)).
J#f

e Alignment force: F; = /\/Z¢ Ixi — xi|)(v; — vi).
Jj=1
[Cucker-Smale '07, Motsch-Tadmor '11, Shvydkoy-Tadmor '18,

Vicsek '95, Krause '97, Kuramoto ...]
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Agent-based models on swarming

@ Agent-based interaction dynamics (based on Newton's second law)
XI:VH va:FH I:].,,N

The interaction force F; depends on {XJ}JN:1 and {vj}j’\’:1

o Attractive/Repulsive force: Fi(t) = —— Z VK(x;(t) — xi(t)).
J#f

e Alignment force: F; = /\/Z¢ Ixi — xi|)(v; — vi).
j=1
[Cucker-Smale '07, Motsch-Tadmor '11, Shvydkoy-Tadmor '18,
Vicsek '95, Krause '97, Kuramoto ...]

Flocking [Ha-Liu '09]
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Kinetic swarming models

o Vlasov-type kinetic equations

1
Otf +v - Vif + EV\, (F(Hf)=0,

where f = f(t,x,v) is a probability measure in (x, v) space.
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Kinetic swarming models

o Vlasov-type kinetic equations

1
Otf +v - Vif + EV\, (F(Hf)=0,

where f = f(t,x,v) is a probability measure in (x, v) space.

@ Nonlocal interaction forces:
FES((ex ) = [ [ olx = ). = (e, v )y

FAR(F)(t, x, v) / VLK (x — y)F(t, s va)dvady.
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Kinetic flocking models

1 cs _
Onf +v-Vif + -V, - (F (f)f) —0.

@ Derivation and wellposedness. [Ha-Tadmor '08]
@ Flocking: [Carrillo-Fornasier-Rosado-Toscani '10]

5(t) = sup Ix —y| < D < o0,
(x,v),(y,v*)Esuppf(t)
V(t) = sup v — v =X 0.

(x,v),(y,v*)€Esuppf(t)

@ Velocity concentration: tlim f(t,x,v) = poo(x)dy=p.
— 00
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Kinetic flocking models

1 cs _
Onf +v-Vif + -V, - (F (f)f) —0.

@ Derivation and wellposedness. [Ha-Tadmor '08]
@ Flocking: [Carrillo-Fornasier-Rosado-Toscani '10]
S(t) = sup Ix —y| <D < o0,
(x,v),(y,v*)Esuppf(t)
V(t) = sup lv— v =%0.

(x,v),(y,v*)€Esuppf(t)

Velocity concentration: tlim f(t,x,v) = poo(x)dy=p.
— 00

Extensions:

Motsch-Tadmor alignment force. [T. '17]

Singular influence ¢: [Mucha-Peszek '17] ... ... s SOUTHCAROLINA
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Vlasov equation with attractive-repulsive potentials

1 AR _
Of +v- Vo + -V, (F (f)f) —0,

FAR(F)(t,x,v) / —VxK(x = y)f(t,y, vi)dvidy.

@ When K = N is the Newtonian potential, the system becomes
Vlasov-Poisson equations in plasma physics.

Global wellposedness (3D) [Schaeffer '91]
Landau damping [Mouhot-Villani '11, Bedrossian-Germain-Masmoudi '17]
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Vlasov equation with attractive-repulsive potentials

1 AR _
Of +v- Vo + -V, (F (f)f) —0,

FAR(F)(t, x, v) / =V K(x — y)f(t,y, v.)dv.dy.

@ When K = N is the Newtonian potential, the system becomes
Vlasov-Poisson equations in plasma physics.

Global wellposedness (3D) [Schaeffer '91]
Landau damping [Mouhot-Villani '11, Bedrossian-Germain-Masmoudi '17]

@ For less singular potential, global wellposedness theory is standard.

Similar theory can be established for kinetic models with attraction,

repulsion and alignment: F = FAR 4 FCS, N
of)lfin SOUTH CAROLINA
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Hydrodynamic limits

@ Macroscopic system by taking moments in v.

Oep+ V- (pu) =0,
Or(pu) +V - (pu@u)+V-P=pF.

p:/fdv, pu:/vfdv, P:/(vfu)®(vfu)fdv.
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Hydrodynamic limits

@ Macroscopic system by taking moments in v.

Oep+ V- (pu) =0,
Or(pu) +V - (pu@u)+V-P=pF.

p:/fdv, pu:/vfdv, P:/(vfu)®(vfu)fdv.

@ Rigorous derivation by imposing a closure on the pressure.
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Hydrodynamic limits

@ Macroscopic system by taking moments in v.

dep+ V- (pu) =0,
Oe(pu) +V - (pu@u) +V - P=pF.

p:/f dv, pu:/vf dv, P:/(vfu)®(vfu)fdv.
@ Rigorous derivation by imposing a closure on the pressure.

_ v—u)?

@ Isothermal ansatz: f(x,v) = p(x)We 2

Bf +v - Vuf +V, - (F(F)f) = % [V, - (v — u)f) + AF].
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Hydrodynamic limits

@ Macroscopic system by taking moments in v.

Oep+ V- (pu) =0,
Or(pu) +V - (pu@u)+ V- P=pF.

p:/f dv, pu:/vf dv, P:/(v—u)@(v—u)fdv.
@ Rigorous derivation by imposing a closure on the pressure.
_ lv—u)?

@ Isothermal ansatz: f(x,v) = p(x)We 2
P =pl [Karper-Mellet-Trivisa '15]
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Hydrodynamic limits

@ Macroscopic system by taking moments in v.

Oep+ V- (pu) =0,
Or(pu) +V - (pu@u)+V-P=pF.

p= [ fdv, pu:/vfdv, P:/(v—u)@(v—u)fdv.
@ Rigorous derivation by imposing a closure on the pressure.

VvV —u(x 2
@ Isothermal ansatz: f(x,v) = p(x) 2,,),,/26 - b=l

P = pl. [Karper-Mellet-Trivisa '15]
@ Mono-kinetic ansatz: f(x,v) = p(x)d,—u(x)-

Of +v-Vif +V, - (F(F)F) = = [V, - (v — u)f)].
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Hydrodynamic limits

@ Macroscopic system by taking moments in v.

Oep+V - (pu) =0,
Oe(pu) +V - (pu® u)+ V- P = pF.

p:/f dv, pu:/vf dv, P:/(vfu)®(vfu)fdv.
@ Rigorous derivation by imposing a closure on the pressure.
Vv —u(Xx 2
@ Isothermal ansatz: f(x,v) = p(x)We*%
P = pl [Karper-Mellet-Trivisa "15]
@ Mono-kinetic ansatz: f(x,v) = p(x)d,—u(x)-
P =0. (Pressureless) [Figalli-Kang '17]
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Hydrodynamic limits

@ Macroscopic system by taking moments in v.

Oep+V - (pu) =0,
Oe(pu) +V - (pu® u)+ V- P = pF.

p:/f dv, pu:/vf dv, P:/(vfu)®(vfu)fdv.
@ Rigorous derivation by imposing a closure on the pressure.

lv—u(|®
@ Isothermal ansatz: f(x,v) = p(x)We* 2

P = plL [Karper-Mellet-Trivisa '15]

@ Mono-kinetic ansatz: f(x,v) = p(x)d,—u(x)-
P =0. (Pressureless) [Figalli-Kang '17]
@ Macroscopic system
[Tadmor-T. 14, Carrillo-Choi-Tadmor-T. '16, Carrillo-Choi-Zatorska '16,
Shvydkoy-Tadmor '17, Do-Kiselev-Ryzhik-T. '18, Kiselev-T. '18, o
Tadmor-He '18, Choi '18, T. '19... ... ] £l SOUTHCAROLINA
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Zero inertia limit

@ Consider the limit when total mass m = ¢ — 0.

1
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Zero inertia limit

@ Consider the limit when total mass m = ¢ — 0.

1

@ Two systems that we concern:
© [ARR] Attraction-Repulsion-Relaxation: F = FAR — .
@ [ARA] Attraction-Repulsion-Alignment(3 zones): F = FAR 4 F¢5,

FES(F)(t.x,v) = / / o(1x — y)(vs — V)F(t, . va)dvidy

FAR(E)Exv) = [ [ TR x = (e, v)dvedy,
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A formal derivation

1
atfe +v- vxfe + 7vv . (F(fe)fe) = 07
€

o A formal derivation of the ¢ — 0 limit (f. — f):

V- (F(f)f) =0
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A formal derivation

1
atfe +v- vxfe + 7vv . (F(fe)fe) = 07
€

o A formal derivation of the ¢ — 0 limit (f, — f):

/SD(V)VV -(F(f)f)dv = 0.
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A formal derivation

Oife + v - Vife + V\,~(F(f€)f€):07

o A formal derivation of the ¢ — 0 limit (f, — f):

/V‘,go F(f)f dv =0.
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A formal derivation

1
Ocf + v Vif. + =V, - (F(£)) =0,
€

o A formal derivation of the ¢ — 0 limit (f, — f):
/V‘,go f)f dv =0.

o(v) =1 Op+ V- (pu)=0.
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A formal derivation

1
Ocf + v Vif. + =V, - (F(£)) =0,
€

o A formal derivation of the ¢ — 0 limit (f, — f):
/V‘,go f)f dv =0.
o(v) =1 Op+ V- (pu)=0.

o(v) =v: [ARR] u(x) = —(V<K * p)(x),
[ARA] [ é(|x — y[)(u(x) — u(y))p(y)dy = —(V<K * p)(x).
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A formal derivation

1
Ocf + v Vif. + =V, - (F(£)) =0,
€

o A formal derivation of the ¢ — 0 limit (f, — f):
/V‘,go f)f dv =0.

o(v)=1: Op+ V- (pu)=0.
(V) =vi [ARR] u(x) = —(K * p)(x),
[ARA] [ é(Ix — y[)(u(x) = u(y))p(y)dy = —(VxK * p)(x).
o(v)=2%v—ulx [ARR] [|v— ul?f(x,v)dv =0,
[ARA] (¢ = p)(x) [ |v — u|*f(x, v)dv = 0.
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A formal derivation

1
Ocf + v Vif. + =V, - (F(£)) =0,
€

o A formal derivation of the ¢ — 0 limit (f, — f):
/V‘,go f)f dv =0.

o(v)=1: Op+ V- (pu)=0.
(V) =vi [ARR] u(x) = —(K * p)(x),
[ARA] [ é(Ix — y[)(u(x) = u(y))p(y)dy = —(VxK * p)(x).
o(v)=2%v—ulx [ARR] [|v— ul?f(x,v)dv =0,
[ARA] (¢ = p)(x) [ |v — u|*f(x, v)dv = 0.

= f(t,x,v) = p(t,x) 5v:u(t,x)~ @%ﬁfﬁ?@omm
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Limiting system

f(t,x,v) = p(t, x) dy—u(e,x)-

v
2& puvemsyor

@ SOUTH CAROLINA

Changhui Tan (U of South Carolina) AP scheme with singular limit DASIV Spring School 15/ 33



f(t,x,v) = p(t, x) dy—u(e,x)-
e For [ARR], the limiting system is the aggregation equation

Otp + Vi - ((—VxK % p)p) = 0.
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f(t,x,v) = p(t, x) dy—u(e,x)-
e For [ARR], the limiting system is the aggregation equation

Otp + Vi - ((—VxK % p)p) = 0.

Wellposedness: [Laurent '07, Bertozzi-Carrillo-Laurent '09, ...]
Rigorous passage to the limit: [Jabin '99, Fetecau-Sun '15]
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f(t,x,v) = p(t, x) dy—u(e,x)-
e For [ARR], the limiting system is the aggregation equation

Otp + Vi - ((—VxK % p)p) = 0.

Wellposedness: [Laurent '07, Bertozzi-Carrillo-Laurent '09, ...]
Rigorous passage to the limit: [Jabin '99, Fetecau-Sun '15]

e For [ARA], the limiting system has an implicitly defined velocity u.
Otp + Vi - (pu) =0,

[ 6x = ) = uly))oly)dy = ~(TK ).
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f(t,x,v) = p(t, x) dy—u(e,x)-
e For [ARR], the limiting system is the aggregation equation
Otp + Vi - ((—VxK % p)p) = 0.

Wellposedness: [Laurent '07, Bertozzi-Carrillo-Laurent '09, ...]
Rigorous passage to the limit: [Jabin '99, Fetecau-Sun '15]

e For [ARA], the limiting system has an implicitly defined velocity u.
Otp + Vi - (pu) =0,

[ 6x = ) = uly))oly)dy = ~(TK ).
Wellposedness: [Fetecau-Sun-T. '16]

Additional restriction: /p(t,x)u(t,x)dx: /po(x)uo(x)dx.
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f(t,x,v) = p(t, x) dy—u(e,x)-
e For [ARR], the limiting system is the aggregation equation
Otp + Vi - ((—VxK % p)p) = 0.

Wellposedness: [Laurent '07, Bertozzi-Carrillo-Laurent '09, ...]
Rigorous passage to the limit: [Jabin '99, Fetecau-Sun '15]

e For [ARA], the limiting system has an implicitly defined velocity u.
Otp + Vi - (pu) =0,

[ 6x = ) = uly))oly)dy = ~(TK ).
Wellposedness: [Fetecau-Sun-T. '16]

Additional restriction: /p(t,x)u(t,x)dx: /po(x)uo(x)dx.

Rigorous passage to the limit: [Fetecau-Sun-T. '16] G2 SOUHAROUNA
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e Velocity scaling methods
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Velocity scaling: framework

ﬁ;(t,X, V) - p(t,X) 5v:u(t,x)-

v
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Velocity scaling: framework

ﬁ;(t,X, V) - p(t,X) 5v:u(t,x)-

@ The transformation 7¢: rescale f. <> (g, Ue, we):

v — ue(t, x)

1
fe(tyxa V) = Ege(taxag)a 5 = T
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Velocity scaling: framework

ﬁ;(t,X, V) - p(t,X) 5v:u(t,x)-

@ The transformation 7¢: rescale f. <> (g, Ue, we):

1 v — ue(t, x)
fé t7 Y = € t7 9 J = *
(8, v) = Sggt:x. ), ¢ o
_ ] ) f vfe(t, x, v)dv
. is th locity: u(t,x) =120 2"
@ u, is the macroscopic velocity: uc(t, x) Tt x,v)dv
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Velocity scaling: framework

ﬁ;(t,X, V) - p(t,X) 5v:u(t,x)-

@ The transformation 7¢: rescale f. <> (g, Ue, we):

1 v — ue(t, x)
fé t7 Y = € t7 9 J = *
(8, v) = Sggt:x. ), ¢ o
_ ] ) f vfe(t, x, v)dv
. is th locity: u(t,x) =120 2"
@ u, is the macroscopic velocity: uc(t, x) Tt x,v)dv

® we is the scaling factor.
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Velocity scaling: framework

ﬁ;(t,X, V) - p(t,X) 5v:u(t,x)-

@ The transformation 7¢: rescale f. <> (g, Ue, we):

1 v — ue(t, x)
fé t7 Y = € t7 9 J = *
(8, v) = Sggt:x. ), ¢ o
_ ] ) f vfe(t, x, v)dv
. is th locity: u(t,x) =120 2"
@ u, is the macroscopic velocity: uc(t, x) Tt x,v)dv

® we is the scaling factor.
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Velocity scaling: framework

ﬁ;(t,X, V) - p(t,X) 5v:u(t,x)-

@ The transformation 7¢: rescale f. <> (g, Ue, we):

v — ue(t, x)

1
fe(tyxa V) = Ege(taxag)a 5 = T

@ u isth ic velocit (t,x) J vE(t,x, v)dv
Ue 1S € MacCroscopiC veloCIty: U\ L, X) = ~—F—FF———~ -
J et x, v)dv

® we is the scaling factor.

Goal: choose w, appropriately so that g — g and g is not singular.

2A pavinsiy or
n}@qsoumomoum
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Velocity scaling: history

@ Kinetic system with singular equilibrium.

f(t,x,v) = p®(x)dy=y~, ast— 0.
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Velocity scaling: history

@ Kinetic system with singular equilibrium.
f(t,x,v) = p®(x)dy=y~, ast— 0.

@ Rescale f < (g, u,w):

v — u(t,x)

1
f(t7X7v):Wg(t7X7€)? ézT
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Velocity scaling: history

@ Kinetic system with singular equilibrium.
f(t,x,v) = p®(x)dy=y~, ast— 0.

@ Rescale f < (g, u,w):

— u(t, x)

1
f(t7X7v):Wg(t7X7€)? fZVT

o Linear Fokker-Planck [Filbet-Russo '04], Granular gas [Filbet-Rey "13]:

w = 4/ Temperature.
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Velocity scaling: history

@ Kinetic system with singular equilibrium.
f(t,x,v) = p®(x)dy=y~, ast— 0.

@ Rescale f < (g, u,w):

— u(t, x)

1
f(t,x,v)zwg(t,x,g), fZVT

o Linear Fokker-Planck [Filbet-Russo '04], Granular gas [Filbet-Rey "13]:

w = 4/ Temperature.

o Kinetic flocking models [Rey-T. '16]:
Propose a new way to learn the scaling w dynamically. .
. . 2 univessity or
The learned w is exact for spatially homogenous system. i SOUHCGROLNA
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Spatially “Homogenous” system

1
Ocfe + -V - (F(f)fe) = 0.

@ Rewrite the system in terms of g,

Orwe 1
018 = < d + 6“46) (£g€) + — <0tue - *B ) 'Vfgﬁ'

€

[ARR]:  Ac(t,x) =1, Be(t,x) = —ue(t,x) — [ VxK(x — y)pe(y)dy,
[ARAL:  Ac(t,x) = [ o(Ix — y|)pe(t,y)dy,

Be(t,x) = [ #(Ix = y)(ue(t,y) — ve(t, x))pe(y)dy — [ VxK(x = y)pe(y)dy.

@SOUIHCAROLINA
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Spatially “Homogenous” system

1
Ocfe + -V - (F(f)fe) = 0.

@ Rewrite the system in terms of g,

Orwe 1
018 = < d + 6“46) (£g€) + — <0tue - *B ) 'Vfgﬁ'

€

[ARR]:  Ac(t,x) =1, Be(t,x) = —ue(t,x) — [ VxK(x — y)pe(y)dy,
[ARA]:  Ac(t,x) = [ o(Ix — yl)pe(t, y)dy,
Be(t,x) = [ (Ix — y[)(ue(t, ) — ue(t, x))pe(y)dy — [ VxK(x — y)pe(y)dy.

@ It is easy to check O;u, = %Be(t,x).
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Spatially “Homogenous” system

1
Ocfe + -V - (F(f)fe) = 0.

@ Rewrite the system in terms of g,

Orwe 1
018 = < d + 6“46) (£g€) + — <0tue - *B ) 'Vfgﬁ'

€

[ARR]:  Ac(t,x) =1, Be(t,x) = —ue(t,x) — [ VxK(x — y)pe(y)dy,
[ARAL:  Ac(t,x) = [ o(Ix — y|)pe(t,y)dy,

Be(t,x) = [ (Ix — y[)(ue(t, ) — ue(t, x))pe(y)dy — [ VxK(x — y)pe(y)dy.
@ It is easy to check O;u, = 18 (t,x).

o Take w.(t,x) = exp (—f jo (s x)ds) Then 0;g. =011
The exact scaling is valid for any initial configurations. @%ﬁﬁ'ﬁ&mw
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Scaling on the full system

@ With free transport, the full system in terms of g. reads
8tge + (Ue + Wﬁf) : nge

_ <atw€ + (e + wef) - VxWwe

We We

1A Ve e

1 1
+ w. <8tu€ + (ue + weg) - Vixue — GBE> : Vgge.

€

@SOUIHCAROLINA
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Scaling on the full system

@ With free transport, the full system in terms of g. reads
8tge + (Ue + Wﬁg) : nge

_ <atw€ + (e + wef) - VxWwe

We We

1A Ve e

1 1
+ w. (afue + (ue + weg) - Vixue — EBE> : Vgge.

€

@ Exact scaling can not be expected:

@SOUIHCAROLINA

Changhui Tan (U of South Carolina) AP scheme with singular limit DASIV Spring School 20 /33



Scaling on the full system

@ With free transport, the full system in terms of g. reads
8tge + (Ue + Wﬁg) : nge

_ <atw€ + (e + wef) - VxWwe

We We

1A Ve e

1 1
+ w. (afue + (ue + weg) - Vixue — EBE> : Vgge.

€

@ Exact scaling can not be expected:
@ The dynamics of u,:

1 1
O+ - Vo + V- (2P) = (B P /£®€ge(€)d£~

€
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Scaling on the full system

@ With free transport, the full system in terms of g. reads
8tge + (Ue + Wﬁg) : nge

_ <atw€ + (e + wef) - VxWwe

We We

1A Ve e

1 1
+ w. (afue + (ue + weg) - Vixue — EBE> : Vgge.

€

@ Exact scaling can not be expected:
@ The dynamics of u,:

1 1
O+ - Vo + V- (2P) = (B P /£®€ge(€)d£~

€

@ The choice of w,:

1
Orwe + ue - Vywe + —Acwe = 0.
€
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Scaling on the full system

@ With free transport, the full system in terms of g, reads

0tge + (Ue + Weg) - V8
= (€ : vxWe) v-f : (gge)

+ ((f ) vx)ue) : vfge -

Do (vx : (WSPG)) : V.gge,

@ Exact scaling can not be expected:
@ The dynamics of u,:

1 1
Oetc + eVt +~Vy+ (WRP) = B, P = /£®€ge(£)d§.

Pe

@ The choice of w,:

1
Orwe + Ue - Viwe + —Aw, = 0.
€

@SOUIHCAROLINA
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Outline

@ Asymptotic-preserving scheme

v
2& puvemsyor

@ SOUTH CAROLINA
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Design asymptotic-preserving scheme

Recall the main idea to overcome singular limit

h—0 h—0
f;th fe geh 8e
Te
2l €0 €0 €0
T—l
h — O € h N O
fh f g" P
i SOUTH CAROLINA
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Design asymptotic-preserving scheme

Recall the main idea to overcome singular limit

h—0 h—0
fh————f gl &
Te
e—0 e—0 e—0 e—0
T—l
h—0 € h—0
7l f gh g
Two ingredients for the scheme to be asymptotic-preserving:
@ g. does not become singular as ¢ — 0.
& pawmsvor
of)lfin SOUTH CAROLINA
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Design asymptotic-preserving scheme

Recall the main idea to overcome singular limit

h—0 h—0
fh————f gl &
Te
e—0 e—0 e—0 e—0
T—l
h—0 € h—0
7l f gh g
Two ingredients for the scheme to be asymptotic-preserving:
@ g. does not become singular as ¢ — 0.
@ An asymptotic-preserving scheme on (ge, ue, w).
& pawmsvor
of)lfin SOUTH CAROLINA
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Criterion for non-singular {g.}

o We call {g¢} is non-singular if g. neither concentrate nor spread out
in v, as € approaches 0.

mgXIge(tvx,é)l < G, and suppge(t,x,&) C Br(0).
€

for all (t,x). G, R are independent with respect to e.
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Criterion for non-singular {g.}

o We call {g¢} is non-singular if g. neither concentrate nor spread out
in v, as € approaches 0.

méaXIge(tvx,é)l <G, and suppg(t,x,§) C Br(0).
3
for all (t,x). G, R are independent with respect to e.

@ Goal: Prove that under our choice of transformation 7, the rescaled
family of solutions {g.} is non-singular.

n}@qsoumomoum
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Spatial oscillation

@ Recall the dynamics of g.:

0t8e + (Ue + Weg) - V8
= (5 : vXWG) vf : (fge)

+ ((g : vx)ue) : Vﬁge -

(vx : (nge)) : vfgea

ewe
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Spatial oscillation

@ Recall the dynamics of g.:

0t8e + (Ue + Weg) - V8
= (5 : vXWG) vf : (gge)

+ ((5 : vx)ue) : Vﬁge -

(vx : (nge)) : vfgea

ewe

One major difficulty is to control the spacial derivatives
V&, Vxwe, Vxue and V4 Pe uniformly in e.
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Spatial oscillation

@ One major difficulty is to control the spacial derivatives
V&, Vxwe, Vxue and V4P, uniformly in e.

@ Take u. as an example. Recall its dynamics

1 1
Otte + ue - Vyue + —Vy - (wae) = EBG.

€
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Spatial oscillation

@ One major difficulty is to control the spacial derivatives
V&, Vxwe, Vxue and V4P, uniformly in e.

@ Take u. as an example. Recall its dynamics

1 1
Otte + ue - Vyue + —Vy - (wae) = EBG.

€

© Without pressure (P. =0): sup ||Vxuc|[re < C. [Tadmor-T. '14]

0<e<eg
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Spatial oscillation

@ One major difficulty is to control the spacial derivatives
V&, Vxwe, Vxue and V4P, uniformly in e.

@ Take u. as an example. Recall its dynamics

1 1
Otte + ue - Vyue + —Vy - (wae) = EBG.

€

© Without pressure (P. =0): sup ||Vxuc|[re < C. [Tadmor-T. '14]

0<e<eg

@ Limiting system (ue — u): ||Viul|1~ < C. [Fetecau-Sun-T. '16]
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Spatial oscillation

@ One major difficulty is to control the spacial derivatives
V&, Vxwe, Vxue and V4P, uniformly in e.

@ Take u. as an example. Recall its dynamics

1 1
Otte + ue - Vyue + —Vy - (wae) = EBG.

€

© Without pressure (P. =0): sup ||Vxuc|[re < C. [Tadmor-T. '14]
0<e<eg

@ Limiting system (ue — u): ||Viul|1~ < C. [Fetecau-Sun-T. '16]

© Note that u. — u weak-+ in measure. Therefore, the bound on the
limiting system does not imply uniform bound on ||V uc| -

n}@qsoumomoum
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Non-oscillatory assumptions

@ We assume that the solution does not have spatial oscillations:

|ng€(t,X,§)| §C1g€(t,x,§),
|Vxue(t,x)| <G.
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Non-oscillatory assumptions

@ We assume that the solution does not have spatial oscillations:

|ng€(t,X,§)| §C1g€(t,x,§),
|Vxue(t,x)| <G.

@ The assumptions imply non-oscillatory bounds for other macroscopic
quantities:

‘vxpe(tvx)’ SClpE(t7X)7
|vxPe(t7X)’ gCl'De(t,X),

Ci(e©t —1) c
Moo <=2 =7 —Zt).
[Vt e < = ep ()
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Non-oscillatory implies non-singular

Theorem ([Chertock-T.-Yan '18])

Let (g, ue,w.) be the solution of the rescaled dynamics.
Assume the solution satisfies the non-oscillatory conditions.

Then, gc(t) is non-singular uniformly in € € [0, o] for all t > 0.

A
Z universiy or
@ SOUTH CAROLINA-
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Non-oscillatory implies non-singular

Theorem ([Chertock-T.-Yan '18])

Let (g, ue,w.) be the solution of the rescaled dynamics.
Assume the solution satisfies the non-oscillatory conditions.

Then, gc(t) is non-singular uniformly in € € [0, o] for all t > 0.

@ If the solution is not oscillatory in spatial variable, the proposed

transformation based on velocity scaling resolves the singularity in the
original limit.

A
Z universiy or
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Non-oscillatory implies non-singular

Theorem ([Chertock-T.-Yan '18])

Let (g, ue,w.) be the solution of the rescaled dynamics.
Assume the solution satisfies the non-oscillatory conditions.

Then, gc(t) is non-singular uniformly in € € [0, o] for all t > 0.

@ If the solution is not oscillatory in spatial variable, the proposed
transformation based on velocity scaling resolves the singularity in the
original limit.

@ The discrete version of the non-oscillatory conditions can be verified a
posteriorly numerically.

A
Z universiy or
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Asymptotic-preserving scheme for the rescaled system

o For (ue,we), the stiff term is linear. Use standard IMEX scheme.

1 1
8[’”6 + Ue - Ve + ;vx : (WEZPG) = ;Bea
. 3

1
Orwe + U - Vywe + —Acwe = 0.
€
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Asymptotic-preserving scheme for the rescaled system

o For (ue,we), the stiff term is linear. Use standard IMEX scheme.
OtUe + ue - Vyue + —Vy - (WE Pe) = -8B,
Pe €
1
Orwe + U - Vywe + —Acwe = 0.
€

o For g, there is no explicit dependence on €. Use explicit schemes.

8tge + (ue + Weg) : nge
= (5 : wae) vf : (fge)

+((€- Viue) - Vege —

(Vi (w2P.)) - Vege,

EwE
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Asymptotic-preserving scheme for the rescaled system

e For (ue,we), the stiff term is linear. Use standard IMEX scheme.

1 1
Otte + Ue - Vyue + —Vy - (w?Pe) = 7867
€

€

1
Orwe + Ue - Viwe + —Acw, = 0.
€

o For g, there is no explicit dependence on €. Use explicit schemes.

018e+Vx - ((Ue + we§)ge)

Ve | (e Vw4 (€ Vu—

PeWe

(V- (wae))> ge] :

We use finite volume method, e.g. upwind.
Some corrections are introduced to ensure [ vge(t,x, v)dv = 0.
(Follow from [Rey-T. '16]) @%ﬁﬁ'—iv&mum
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Outline

e Numerical experiments

v
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Validation of non-oscillatory assumptions

Plots of maxy |Vxpe(t,x)/pe(t, x)|, maxy |VxPe(t, x)/pe(t, x)| and
maxy |Vxue(t, x)|, for t € [0,1] and different choices of .

35 Pz 35 pe
3 3
25
25
2
2
15
4 15
05 1
00 0.2 0.4 0.6 08 1 0'50 0.2 0.4 06 0.8 0.2 0.4 0.6 0.8 1
t t t
Initial condition:
g°(x,8) = P (IM(E),  M(E) = 5ze €2,
P(x) =1+ e—20(x—1)* | —2o(x+1)27 WO(x) =0, wd(x)=1.
@%ﬁﬁ?&mmm
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Consistency test

Comparison between solving f. and (g, ue, w.) for e = 1.
Snapshots of (p, u) at t = 0,0.3,0.7.

0.15
0.1 t=0.3
0.05 t=0.7
>
t=0

o ~
o V\/
-0.1 -y ° )

x

f

A
UNIVERSITY OF

. . . . uff){in SOUTH CAROLINA
For t large or € small, f(t) is singular and the direct scheme faile™

=)
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Asymptotic-preserving test

Snapshots of (p., ue) at t = 1 for different e. When € becomes small, the
profile approaches the limiting system.

p(t=1,z) u(t=1,z)
0.8 T T T T T T 1.5
——ce=1
0.7 —— e =10""!
06 —— =107
' —— =107
0.5 —— limiting system| |

v
2& puvemsyor
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An application

Aggregation system (ARR)

Rescaled Morse potential:
K(x) = —e X 4 2.

Initial configuration:

0 2 2
0 P°(x) [ _(6+2) _(6=2)
X, = —"|e 0.4 + e 0.4
8 (%8 ==
pO(X) — 1078 + 6740)(2,
wO(x) =0, wox)=1.

Two groups, same location (near 0),
opposite velocity (around +2).

Kinetic regime: e =1

g stays regular in all time.

Long time behavior: alignment.

9:(t,2,€)

t=10.00

-t =10.06

0.4
0.3
0.2

t=0.15
o

0.1

0.4

pe(t, ) p=(t, z)u-(t,z) we(t, )
05 4
0 05
05 0

0o 2 2 0 2 2 0 2
05 4
0 05
05 0

0 2 2 0 2 2 o 2
05 4
0 05
-05 0

2 0 2 2 0 2 2 0 2
05 4
0 f——— 05
-05 0

0 2 2 o0 2 2 0 2
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An application

p-(t,x) pe(t,x)u.(t, ) we(t,x)

Aggregation system (ARR) _ o 1
IS] 0.1
= 0 05
Rescaled Morse potential: 2 o1 .
K(X) = _e_|X| + €_2|X|. O 2 o0 2 2 o0 2
- . . ¥ 1
Initial configuration: 2 or
0(x, ) p°(x) [ _<so+i)2 n _(50—5)2 n o1 °
8 \XQ)= —F—= |¢ : e : B 02 0
2 0.47‘- 5 0 2 -2 0 2 -2 0 2
pO(X) — 1078 + 6740x ,
0 _ 0 o - 0.2 1
u(x) =0, w(x)=1. 2 04
© o—‘/‘— 05
Two groups, same location (near 0), ! 0.1
0.2 0
opposite velocity (around £2). s o oo s
Hydrodynamic regime: ¢ = 1074 _ 02 !
< 0.1
g also stays regular in all time. T N 05
Long time behavior: aggregation. b 02 0 INA
0 2 -2 0 2 -2 0 2
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Conclusion

Asymptotic preserving schemes on kinetic models with singular limits

h—0 h—0
fl ———— 1. g &
Te
e—0 e—0 e—0 e—0
T—l
h—0 € h—0
fh f g’ g
B o
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Conclusion

Asymptotic preserving schemes on kinetic models with singular limits

h—0 h—0
fh ———— £ g’ 8e
7Te
e—0 e—0 e—0 e—0
T—l
h—0 € h—0
7 f gh 4
Extensions:
@ Hydrodynamic limits for kinetic swarming models with singular
alignment [Potayo-Soler '17]

@ Other systems with singular or near-singular limits (Boltzmann,
granular gas, ...)

e Data S
@SOUIHCAROL[NA
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Conclusion

Asymptotic preserving schemes on kinetic models with singular limits

h—0 h—0
fh ———— £ g’ 8e
7Te
e—0 e—0 e—0 e—0
T—l
h—0 € h—0
7 f gh 4
Extensions:
@ Hydrodynamic limits for kinetic swarming models with singular
alignment [Potayo-Soler '17]

@ Other systems with singular or near-singular limits (Boltzmann,
granular gas, ...)
o Data

A

Thanks for your attention! 20 ST Gmouma

Changhui Tan (U of South Carolina) AP scheme with singular limit DASIV Spring School 33 /33



	Introduction
	Kinetic swarming models and zero-inertia limit
	Velocity scaling methods
	Asymptotic-preserving scheme
	Numerical experiments

