
Poor Global Optima for Fully Connected Deep ReLU Neural
Networks - Special Examples for HD Approximation

Qingguang Guan, Wenqing Hu and etc.

Department of Mathematics and Statistics
Missouri University of Science and Technology

DASIV Spring School, March 18, 2019
University of South Carolina

1 / 15



Introduction to Fully Connected Deep ReLU Neural Networks

x1

x2

x3

x4

Input
x

1

2

3

4

5

hidden
layer 1

1

2

3

4

5

hidden
layer 2

1

2

3

hidden
layer 3

y

Output
y

Figure: A simple fully connected Deep ReLU Neural Network

Take the first neuron in hidden layer 1 as an example, the input of it is∑4
i=1 w1,ixi + b1, the output is max(0,

∑4
i=1 w1,ixi + b1).

2 / 15



High Dimensional Function Approximation

How good it can be?
As good as continuous piece-wise linear approximation.

Dmitry Yarotsky, Optimal approximation of continuous functions by very deep
ReLU networks, Proceedings of Machine Learning Research. Volume 75,
pages:1–11, 2018.

J. He, L. Li, J. Xu and C. Zheng, ReLU Deep Neural Networks and Linear Finite
Elements, arXiv preprint. arXiv:1807.03973v2, 2018.

How bad it can be?
We will use the same setting as in those two papers which employ [0, 1]D hyper cube
and uniform grid to show that there exists an approximation function which has exact
values on grid points however on each point x if dist(x, grid points) > ε for a given
ε > 0, the function’s value is 0.

3 / 15



The Optimization Problem

Let us consider a function f (x), x ∈ [0, 1]D that we want to approximate. We are
given training data (xi , f (xi )), i = 1, 2, ...,N, where xi is grid point. We construct
deep ReLU neural network with approximation function fh(x) = fh(x ;ω∗) where ω∗

represents the weights and biases. Our ReLU neural network fits the training data
perfectly, we have

1

N

N∑
i=1

(f (xi )− fh(xi ;ω
∗))2 = 0 .

In other words, ω∗ is a global optima on training data. We then show that given an
arbitrary test data (x , f (x)) where x is randomly sampled, our model will have the
worst generalization error.

4 / 15



One Dimensional Function Approximation-Special Case

We start with one-dimensional input variable x ∈ R, for fully connected neural network
with two hidden layers, and ReLU activation function. Suppose we have a set
{xi |xi ∈ [0, 1], i = 1, 2, · · · ,N}, xi is corresponding to label −1, if xi < 0.5 and 1 if
xi ≥ 0.5.
We define the one dimensional basis function as:

φ(ξ) =
1

h
a(ξ + h)−

2

h
a(ξ) +

1

h
a(ξ − h), (1)

where ξ ∈ [0, 1], h < 1, a(ξ) is the ReLU function. For xi we define the basis function
as

φi (x) = φ(x − xi ). (2)

where φi (x) has the height 1, and compact support [xi − h, xi + h].

5 / 15



Construction of 1-D Function Approximation-Special Case

For the first hidden layer, if we have 2N + 1 neurons, each neuron has distinct input
as: x − xi or x − xi − h or x − xi + h, i = 1, 2, · · · ,N. Then, using the output of first
hidden layer, we can build basis functions φi (x), i = 1, 2, · · · ,N, and they have
non-overlap compact support.
For the second hidden layer, suppose we have 2 neurons, the input of first neuron is:

I1(x) :=

 ∑
i for xi≥0.5

φi (x)

− b (3)

where b is the bias, it’s easy to see, I1(x) is the linear combination of first hidden
layer’s output. Similarly, we have the input of second neuron:

I2(x) :=

 ∑
i for xi<0.5

φi (x)

− b. (4)

Let b ∈ [0, 1), then the final output is:

fh(x) :=
a(I1(x))

1− b
+ (−1)

a(I2(x))

1− b
.

6 / 15



Graphs for 1-D Examples-Special Case

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(a)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(b)

0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

(c)

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

(d)

Figure: (a) φi (x), xi = 0.5, h = 0.1; (b) fh(x) when N = 6, b = 0; (c) fh(x) when N = 6,
b = 0.9; and, (d) fh(x) for Cross Entropy when N = 6, b = 0.95.

7 / 15



1-D General Function Approximation

To approximate a continuous function f (x), x ∈ [0, 1]. For the first hidden layer, we
need N + 2 neurons, each neuron has distinct input as: x − xi or x − xi − h or
x − xi + h, i = 1, 2, · · · ,N. Then, using the output of first hidden layer, we can build
basis functions φi (x), i = 1, 2, · · · ,N. Then we need N neurons in second hidden layer
and the final output is:

fh(x) :=
N∑
i=1

f (xi )
a(φi (x)− b)

1− b
,

where b ∈ [0, 1). So as b → 1, the approximation will fail though it is the global
optimal solution.
How about deeper neural networks? It doesn’t matter how deep it is as long as it has
the same first two hidden layers and at least two neurons for each later hidden layers.
We can divide the second layer’s output fh(x) into two parts, positive part and
negative part then make the negative part positive, pass two parts separately into the
next layer’s two different neurons. And the inputs for all other neurons are 0. For final
output, we can assign the correct sign (+/-) and combine them together.

8 / 15



Two Dimensional Function Approximation-Special Case

In this section, we will build two dimensional “basis functions” based on one
dimensional ones. The input variable is (x , y) ∈ R2, the region is [0, 1]× [0, 1]. We
have the training set data {(xi , yj ), i , j = 1, 2, · · · ,N}, where
x1 = y1 = 0, xN = yN = 1, (xi , yj ) is the grid point.
The point (xi , yj ) in data set has label −1, if xi < 0.5 and 1 if xi ≥ 0.5. The size of
data is N × N. Denote φi (x) = φ(x − xi ) and φj (y) = φ(y − yj ). Then we can define
the 2D “basis function” as:

Φ(x , y) =
∑
{xi}

φi (x) +
∑
{yj}

φj (y),

where sets {xi}, {yj} are chosen grid points.

9 / 15



Construction of 2-D Function Approximation-Special Case

Let xi+1 − xi = yj+1 − yj = 2h > 0, for the first hidden layer, we need 2(2N + 1)
neurons, each neuron has distinct input as: x − xi or x − xi − h or x − xi + h; y − yj or
y − yj − h or y − yj + h, i , j = 1, 2, · · · ,N.
For second hidden layer, we need 2 neurons, the input of first neuron is:

I1(x , y) :=
∑

xi≥0.5

φi (x) +
N∑
j=1

φj (y)− b (5)

The input of second neuron is:

I2(x , y) :=
∑

xi<0.5

φi (x) +
N∑
j=1

φj (y)− b (6)

Let b ∈ [1, 2), then the final output is:

fh(x , y) :=
a(I1(x , y))

2− b
+ (−1)

a(I2(x , y))

2− b
.

The measure of compact support for fh(x , y) is decreasing to 0 as b → 2.

10 / 15



Graphs for 2-D Examples-Special Case

(a) (b)

Figure: Here x1 = y1 = 0.1, h = 0.1, N = 6, (a) Graph of a(I1(x, y))/(2 − b) with b = 1; (b)
Graph of a(I1(x, y))/(2 − b) with b = 1.5.

11 / 15



High Dimensional Function Approximation-General Case

Let x ∈ RD ,D ≥ 3,
x = (x1, x2, · · · , xD),

the region is a D dimensional hyper-cube [0, 1]D . And {x1,i1 , i1 = 1, 2, · · · ,N} is
denoted as the scalar value set which is uniform in first dimension. Similarly, we have
{xj,ij }, j = 2, · · · ,D, ij = 1, 2, · · · ,N.
The training set data is

{(x1,i1 , x2,i2 , · · · , xD,iD )}

and x1,1 = x2,1 = · · · = xD,1 = 0 ; x1,N = x2,N = · · · = xD,N = 1. Denote
φj,ij (xj ) = φ(xj − xj,ij ). Then we can define the D dimensional “basis function” as:

Φ(x) =
D∑
j=1

 ∑
{xj,ij }

φj,ij (xj )

 ,

where sets {xj,ij } are chosen as needed.

12 / 15



Construction of HD Function Approximation-General Case

To approximate a continuous function f (x), x ∈ [0, 1]D by three layer Relu neural
network, we use the training set

{((x1,i1 , x2,i2 , · · · , xD,iD ), f (x1,i1 , x2,i2 , · · · , xD,iD ))}

xj,ij ∈ [0, 1] are uniform, xj,ij+1 − xj,ij = h > 0. We define the “basis function” as:

Φi1,i2,··· ,iD (x) =
D∑
j=1

φj,ij , (7)

where a(x) is the Relu function, Φi1,i2,··· ,iD has the height D. The inputs for first

hidden layer are similar, we need D(N + 2) neurons, which is less. Then we need ND

neurons in second hidden layer, and the final output is:

fh(x) :=
N∑

i1,i2,··· ,id=1

fi1,i2,··· ,iD
a(Φi1,i2,··· ,iD (x)− b)

D − b
,

where
fi1,i2,··· ,iD = f (x1,i1 , x2,i2 , · · · , xD,iD ),

and b ∈ [D − 1,D). So as b → D, the approximation will fail though it is the global
optimal solution. Deeper networks will fail same as one dimensional case.

13 / 15



Special Case for 3-D Function Approximation

(a) (b)

Figure: Density color plots for 3-D functions, blue color means close to zero. The center of each
diamond has value 1, the surface of it has value 0. Here N = 4, xj,1 = 1/8, j = 1, 2, 3, h = 1/8,
(a) Graph of a(I1(x))/(3 − b) with b = 2.1; (b) Graph of a(I1(x))/(3 − b) with b = 2.7.

14 / 15



Thanks & Questions ?

15 / 15


