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Problem setting

Goal: To approximate a function
f:D=(-1,1)¢ - C, withd>1,

from pointwise samples f(t1),. .., f(tm)-
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Setting and assumptions (informal):
» We are free to choose the sampling points t;;

> Samples f(t;) may be expensive to compute (e.g., involving PDE
solve); and corrupted by unknown sources of error;

» f is compressible w.r.t. some orthogonal polynomials.

Main challenge: Curse of dimensionality. [Bellman, 1961]
Application: Uncertainty Quantification (UQ).
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Function approximation and UQ meet CS

We will focus on a recent class of high-dimensional approximation techniques
based on compressed sensing (CS).

(A subset of the) main references:
» Compressed sensing + orthogonal polynomials
» [Rauhut, Ward, 2012], [Yan, Guo, Xiu, 2012];
> Weighted ¢! minimization and function approximation
» [Rauhut, Ward, 2016], [Adcock, 2017],
[Chkifa, Dexter, Tran, Webster, 2018], [Adcock, B., Webster, 2018]
» CS + uncertainty quantification

> [Doostan, Owhadi, 2011], [Mathelin, Gallivan, 2012],
[Yang, Karniadakis, 2013], [Peng, Hampton, Doostan, 2014],
[Rauhut, Schwab, 2017], [Bouchot, Rauhut, Schwab, 2017]

> Fast-growing literature, very active community! s



The methodology (1/2)

Sparsity basis: We consider tensorized bases {¢);};cyg for L?(D)

=05 @@ 9,

where {¢;};jen, are 1D Chebyshev or Legendre orthogonal polynomials.

F= X

jeng

Ambient set: Fixed a finite-dimensional set A C Ng, with |[A| = N, we

truncate
f= ZXJ% + Y U = hoten
JEN Jjén
N—_—— N——

Approximation Truncation error
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The methodology (2/2)

Sampling: Evaluate f at m random sampling points

tr . tn R ()

where v is the orthogonality measure of {1 }jd;g:
N
A= (Jzi(t); € C™", y = (J5f(t)) € C7
Moreover, denoting xp = (xi)ica € C", we have the linear system
y = Axp + e,
where e is an unknown error corrupting the data.

Recovery: weighted quadratically-constrained basis pursuit (WQCBP)

ni=arg min flzfle st Az —ylla<n ~ f= Z%‘d’b
JEN
where [|z[|1,u = 37,5 uj|zj| and the weights are defined as
uj = [l o=
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Structured sparsity in lower sets

We study the recovery properties of the method using lower sets.

Definition (Lower or downward closed set)
Aset SCNYislowerifVi,j: i<jand jeS=icS.

v X x

] | m
T T 1]
1 T EEE
EEE EEEE EEEN
EEEN EEEN EE EE
EEEEEE EEENEE EEEEEN
1 1 1
Goal: to find an approximation Xj to x s.t.
[x = Xnll1,u = 05,0 (x)1,u = inf Iz —x][1,u-

lzllo<s,
supp(z) lower
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Two key properties

» Compressibility: In parametric PDEs, the best s-term approximation error
in lower sets of the solution map has decay rate s~, o > 0 in L2 or L*®
for a large class of smooth PDE operators [Chkifa, Cohen, Schwab, 2015]

» The union of all s-sparse lower sets is the hyperbolic cross:

d
NJS = {i: (i, ig) NG JJG+1) < s},

j=1
resulting in a controlled growth of N with respect to d and s

N = V\EIE| < min {534d752+log2(d)} .

[Kiihn, Sickel, Ullrich, 2015; Chernov, Diing, 2016]

s=17
[Image courtesy of Prof. Daniel Potts http://www-user.tu-chemnitz.de/~potts/nfft/nsfft.php]
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Noise-aware recovery analysis
[Chkifa, Dexter, Tran, Webster, 2018]

Assuming to know an a priori upper bound of the form
lell2 <,
and assuming
m = s7 - In?(s)min{d + In(s), In(2d) In(s)} + In(s) In(In(s) /), (%)

where

2 (Legendre)
"}/ =
i) ~ 1.58  (Chebyshev),
WQCBP recovers an approximation f to f such that

I = Fllee S oo ()1 +57"%n

with probability at least 1 — . Similar bound holds w.r.t. the L2 norm.

Good news! In (x), m depends logarithmically on d.
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A

As in the standard CS case, e may contain truncation, numerical,
and model error. In particular, truncation error is unavoidable in
this context. As a consequence,

lell2 <, (+)

is usually not available.

8/18



A

As in the standard CS case, e may contain truncation, numerical,
and model error. In particular, truncation error is unavoidable in
this context. As a consequence,

lell2 < n, (%)
is usually not available.
0

Can we bridge this gap between theory and practice?
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Noise-blind recovery analysis
Theorem [Adcock, S.B., Webster, 2018]
Let A = /\ES be the hyperbolic cross and
m = 57 - In3(s) min{d + In(s), In(2d) In(s)} + In(s) In(In(s) /&) .
= L(s,d,e)

where v = 2 (Legendre) or v = ::8; ~ 1.58 (Chebyshev).

Then, for any f € L2(D) N L>(D) and >0, WCQBP computes f s.t.

If = Flleoo) S ot (x)1.u + 8"2(n + llell2 + Qu(A) - max{||e]|2 — 7, 0}),

with probability 1 — . Moreover,

/2 vV L(s,d,¢)
Q'—’(A) S Umin(\/%A*)’

where oo = 2 (Legendre) or o = 1 (Chebyshev).

»> Note: m depends logarithmically on d.

> An analogous result holds with respect to the L2(D) norm.
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Good news:

>

The assumption ||e|l2 < 1 is not needed (as opposed to previous
results).

The term max{||e[|2 — 1,0} suggests the choice 1 =~ ||¢|
theoretically justifying the use of cross validation.

2,

Omin(/ T A*) behaves well in expectation.
Numerics show that Q,(A) has moderate size.

Proof based on: (weighted versions of) restricted isometry and
null space properties, quotient property [Wojtaszczyk, 2010]
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Good news:

> The assumption ||e||2 < 7 is not needed (as opposed to previous
results).

> The term max{||e|l2 — 7,0} suggests the choice 1 ~ | ¢|
theoretically justifying the use of cross validation.

2,

> Omin(/ N A*) behaves well in expectation.
> Numerics show that Q,(A) has moderate size.

> Proof based on: (weighted versions of) restricted isometry and
null space properties, quotient property [Wojtaszczyk, 2010]

Problem:

> The choice of the tuning parameter 7 still depends on ||e]|2...

-~ 2
U0

Can we get rid of the dependence of the decoder on e?
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Alternative decoders

In [Adcock, Bao, S.B., 2017], we suggest and analyze the performance of
two alternative decoders.

> Weighted LASSO (WLASSO)

1Az = yI3 + Xllzll1,0,

min
zeCN

The weighted version of the LASSO [Tibshirani, 1996], extremely
popular in statistics, signal processing and, more recently, in
function approximation.

> Weighted square-root LASSO (WSR-LASSO)

min [|Az = yll2 + Allz[|1.u,

zeCN
Introduced in [Belloni, Chernozhukov, Wangand, 2014] (in the
unweighted version) and quite popular in statistics.

Its potential not fully exploited in CS (yet!).
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Recovery guarantees

Theorem [Adcock, Bao, S.B., 2017]
Under the same setting as WQCBP, if m 2 s7 - L(s, d,¢) and

le] 1
o= | /j (WLASSO), A= —5 (WSR-LASSO), (%)

where v = 2 or In(3 ) , for Legendre and Chebyshev polynomials,

In(2
respectively, the apprOX|mat|on f computed by WLASSO and
WSR-LASSO satisfies

If = Fllise S 00 ()10 + 572,

with probability at least 1 — «.

© The choice of tuning parameter (x) is independent of e for
WSR-LASSO.

© The term ||e||2 is not amplified by any log factor.
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Numerics: function approximation
Dimension d = 15, function f(t) = exp (—% Zzil COS(t@)),

s =10, N = 1432, m = 280, Gaussian noise, 1/s7/? ~ 1.6126e — 01

WQCBP - Chebyshev
WLASSO - Chebyshev WSRLASSO - Chebyshey

10

10°
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Some highlights:
» Optimal tuning parameter strategies confirmed numerically.

» Highly-noisy data + right parameter choice
~> substantial error reduction (= factor 7)
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An example from parametric PDEs
Consider the parametric diffusion equation

~V - (a:Vu) =100-1g, in Q= (0,1)2
uy =0, on 0%,

8
where a; = 1 - "1q,(0.595 + 0.395t,) € [0.01,0.99] and t € (~1,1)%.
(=1

Ny =1 Ny =3

NS
RO DROORX
S
X o

Quantity of interest: f(t) = [ ur(x)dx.

» Each sample f(t;) depends on a PDE solve;

» The samples are affected by discretization and numerical error.
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Numerical results

The performance of WSR-LASSO is analogous to WQCBP and WLASSO
without any a priori knowledge on e.

%1073 Comparison - Parametric PDE

20 40 60 80 100

o  WQCBP 7 tuned using a high-fidelity solution to estimate e
*  WLASSO A tuned using a high-fidelity solution to estimate e

(1 WSR-LASSO X tuned according to the theory

Parameters: s = 10, N = 353.
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The case of sparse corruptions
Assume an unknown subset of the samples to be corrupted arbitrarily.

e = ebounded + esparse’

where ||e5P2"*¢|| < k has possibly unbounded entries.

Motivation:
> Large-scale UQ computations are
performed on big clusters.

» Node failures can compromise these
expensive computations.

> Need for fault-tolerant methods.
Decoder: mjcr}v |Az = y|l1 + A||z]|1,u (Weighted LAD-LASSO, [Xu, 2005])
ze
If A= /% and m > s7 - L(s,d,e), then [Adcock, Bao, S.B., 2017]

1 = Fllee S 05,0 ()10 + 5772[|e".
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Future challenges



Improved sampling strategies

In UQ, sampling is the most computationally expensive part. Hence,
devising methods that need the less samples is crucial.
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Improved sampling strategies

In UQ, sampling is the most computationally expensive part. Hence,
devising methods that need the less samples is crucial.

1. Can we improve the bound m =< s L(s,d,&)?

2. Devise adaptive sampling strategies.
Promising preliminary results in 1D. [Adcock, Boyer, S.B., 2018]

3. The quest for optimal sampling strategies.
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Faster recovery

CS is able to lessen the curse of dimensionality w.r.t. to the number of
samples. However, for large-scale UQ problems, N may become too
large to allow for convex minimization in CN.
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Faster recovery

CS is able to lessen the curse of dimensionality w.r.t. to the number of
samples. However, for large-scale UQ problems, N may become too
large to allow for convex minimization in CN.

Future direction: Adopting greedy strategies to accelerate the
recovery phase.

Preliminary numerical results show the potential of weighted orthogonal
matching pursuit as an alternative to weighted ¢ miminization.
[Adcock, S.B., 2018]

Main advantages & opportunities:
> Number of iterations O(s);
> Parallelizability;

» Easily adaptable to structured sparsity.
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