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Problem setting

Goal: To approximate a function

f : D = (−1, 1)d → C, with d � 1,

from pointwise samples f (t1), . . . , f (tm).

Setting and assumptions (informal):

I We are free to choose the sampling points ti ;

I Samples f (ti ) may be expensive to compute (e.g., involving PDE
solve); and corrupted by unknown sources of error;

I f is compressible w.r.t. some orthogonal polynomials.

Main challenge: Curse of dimensionality. [Bellman, 1961]

Application: Uncertainty Quantification (UQ).
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Function approximation and UQ meet CS
We will focus on a recent class of high-dimensional approximation techniques
based on compressed sensing (CS).

(A subset of the) main references:
I Compressed sensing + orthogonal polynomials

I [Rauhut, Ward, 2012], [Yan, Guo, Xiu, 2012];
I Weighted `1 minimization and function approximation

I [Rauhut, Ward, 2016], [Adcock, 2017],
[Chkifa, Dexter, Tran, Webster, 2018], [Adcock, B., Webster, 2018]

I CS + uncertainty quantification
I [Doostan, Owhadi, 2011], [Mathelin, Gallivan, 2012],

[Yang, Karniadakis, 2013], [Peng, Hampton, Doostan, 2014],
[Rauhut, Schwab, 2017], [Bouchot, Rauhut, Schwab, 2017]

I Fast-growing literature, very active community!
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The methodology (1/2)

Sparsity basis: We consider tensorized bases {ψj}j∈Nd
0
for L2(D)

ψj = φj1 ⊗ · · · ⊗ φjd ,

where {φj}j∈N0 are 1D Chebyshev or Legendre orthogonal polynomials.

f =
∑
j∈Nd

0

xjψj .

Ambient set: Fixed a finite-dimensional set Λ ⊆ Nd
0 , with |Λ| = N, we

truncate
f =

∑
j∈Λ

xjψj︸ ︷︷ ︸
Approximation

+
∑
j /∈Λ

xjψj︸ ︷︷ ︸
Truncation error

=: fΛ + eΛ.
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The methodology (2/2)
Sampling: Evaluate f at m random sampling points

t1, . . . , tm
i.i.d.∼ ν(t)

where ν is the orthogonality measure of {ψj}j∈Nd
0
:

A = ( 1√
m
ψj(ti ))ij ∈ Cm×N , y = ( 1√

m
f (ti ))i ∈ Cm

Moreover, denoting xΛ = (xi )i∈Λ ∈ CN , we have the linear system

y = AxΛ + e,

where e is an unknown error corrupting the data.

Recovery: weighted quadratically-constrained basis pursuit (WQCBP)

x̂Λ := arg min
z∈CN

‖z‖1,u s.t. ‖Az − y‖2 ≤ η ; f̂ =
∑
j∈Λ

x̂jψj ,

where ‖z‖1,u =
∑

j∈Λ uj |zj | and the weights are defined as

uj := ‖ψj‖L∞ .
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Structured sparsity in lower sets

We study the recovery properties of the method using lower sets.

Definition (Lower or downward closed set)
A set S ⊆ Nd

0 is lower if ∀i , j : i ≤ j and j ∈ S =⇒ i ∈ S .

j
1

j
2

j
1

j
2

j
1

j
2

Goal: to find an approximation x̂Λ to x s.t.

‖x − x̂Λ‖1,u ≈ σs,L(x)1,u = inf
‖z‖0≤s,

supp(z) lower

‖z − x‖1,u.
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Two key properties
I Compressibility: In parametric PDEs, the best s-term approximation error

in lower sets of the solution map has decay rate s−α, α > 0 in L2
ν or L∞

for a large class of smooth PDE operators [Chkifa, Cohen, Schwab, 2015]
I The union of all s-sparse lower sets is the hyperbolic cross:

ΛHC
d,s =

{
i = (i1, . . . , id) ∈ Nd

0 :
d∏

j=1

(ij + 1) ≤ s

}
,

resulting in a controlled growth of N with respect to d and s

N = |ΛHC
d,s | . min

{
s34d , s2+log2(d)

}
.

[Kühn, Sickel, Ullrich, 2015; Chernov, Dũng, 2016]

[Image courtesy of Prof. Daniel Potts http://www-user.tu-chemnitz.de/~potts/nfft/nsfft.php]
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Noise-aware recovery analysis
[Chkifa, Dexter, Tran, Webster, 2018]
Assuming to know an a priori upper bound of the form

‖e‖2 ≤ η,

and assuming

m � sγ · ln2(s)min{d + ln(s), ln(2d) ln(s)}+ ln(s) ln(ln(s)/ε), (∗)

where

γ =

{
2 (Legendre)
ln(3)
ln(2) ≈ 1.58 (Chebyshev),

WQCBP recovers an approximation f̂ to f such that

‖f − f̂ ‖L∞ . σs,L(x)1,u + sγ/2η

with probability at least 1− ε. Similar bound holds w.r.t. the L2
ν norm.

Good news! In (∗), m depends logarithmically on d .
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As in the standard CS case, e may contain truncation, numerical,
and model error. In particular, truncation error is unavoidable in
this context. As a consequence,

‖e‖2 ≤ η, (∗)

is usually not available.

Can we bridge this gap between theory and practice?
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Noise-blind recovery analysis
Theorem [Adcock, S.B., Webster, 2018]
Let Λ = ΛHC

d,s be the hyperbolic cross and

m � sγ · ln2(s)min{d + ln(s), ln(2d) ln(s)}+ ln(s) ln(ln(s)/ε)︸ ︷︷ ︸
=: L(s, d , ε)

.

where γ = 2 (Legendre) or γ = ln(3)
ln(2)
≈ 1.58 (Chebyshev).

Then, for any f ∈ L2
ν(D) ∩ L∞(D) and η ≥ 0, WCQBP computes f̂ s.t.

‖f − f̂ ‖L∞(D) . σs,L(x)1,u + sγ/2(η + ‖e‖2 +Qu(A) ·max{‖e‖2 − η, 0}),

with probability 1− ε. Moreover,

Qu(A) ≤ sα/2
√

L(s, d , ε)

σmin(
√

m
N
A∗)

,

where α = 2 (Legendre) or α = 1 (Chebyshev).

I Note: m depends logarithmically on d .
I An analogous result holds with respect to the L2

ν(D) norm.
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Good news:

I The assumption ‖e‖2 ≤ η is not needed (as opposed to previous
results).

I The term max{‖e‖2 − η, 0} suggests the choice η ≈ ‖e‖2,
theoretically justifying the use of cross validation.

I σmin(
√

m
NA
∗) behaves well in expectation.

I Numerics show that Qu(A) has moderate size.

I Proof based on: (weighted versions of) restricted isometry and
null space properties, quotient property [Wojtaszczyk, 2010]

Problem:

I The choice of the tuning parameter η still depends on ‖e‖2...

Can we get rid of the dependence of the decoder on e?
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Alternative decoders

In [Adcock, Bao, S.B., 2017], we suggest and analyze the performance of
two alternative decoders.

I Weighted LASSO (WLASSO)

min
z∈CN

‖Az − y‖22 + λ‖z‖1,u,

The weighted version of the LASSO [Tibshirani, 1996], extremely
popular in statistics, signal processing and, more recently, in
function approximation.

I Weighted square-root LASSO (WSR-LASSO)

min
z∈CN

‖Az − y‖2 + λ‖z‖1,u,

Introduced in [Belloni, Chernozhukov, Wangand, 2014] (in the
unweighted version) and quite popular in statistics.
Its potential not fully exploited in CS (yet!).



12/18

Recovery guarantees

Theorem [Adcock, Bao, S.B., 2017]
Under the same setting as WQCBP, if m & sγ · L(s, d , ε) and

λ � ‖e‖2
sγ/2

(WLASSO), λ � 1
sγ/2

(WSR-LASSO), (∗)

where γ = 2 or ln(3)
ln(2) , for Legendre and Chebyshev polynomials,

respectively, the approximation f̃ computed by WLASSO and
WSR-LASSO satisfies

‖f − f̃ ‖L∞ . σs,L(x)1,u + sγ/2‖e‖2,

with probability at least 1− ε.

, The choice of tuning parameter (∗) is independent of e for
WSR-LASSO.

, The term ‖e‖2 is not amplified by any log factor.
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Numerics: function approximation
Dimension d = 15, function f (t) = exp

(
− 1

15

∑15
`=1 cos(t`)

)
,

s = 10, N = 1432, m = 280, Gaussian noise, 1/sγ/2 ≈ 1.6126e − 01

Some highlights:

I Optimal tuning parameter strategies confirmed numerically.

I Highly-noisy data + right parameter choice
; substantial error reduction (≈ factor 7)
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An example from parametric PDEs
Consider the parametric diffusion equation{

−∇ · (at∇ut) = 100 · 1Q , in Ω = (0, 1)2,

ut = 0, on ∂Ω,

where at = 1−
8∑
`=1

1Ω`(0.595 + 0.395t`) ∈ [0.01, 0.99] and t ∈ (−1, 1)8.

Ω1

Ω

Ω

Ω

Q

Ω

Ω

Ω

Ω

4

6

2

7

3

5

8

Quantity of interest: f (t) =
∫
Q
ut(x) dx .

I Each sample f (ti ) depends on a PDE solve;
I The samples are affected by discretization and numerical error.
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Numerical results
The performance of WSR-LASSO is analogous to WQCBP and WLASSO
without any a priori knowledge on e.

◦ WQCBP η tuned using a high-fidelity solution to estimate e
? WLASSO λ tuned using a high-fidelity solution to estimate e
� WSR-LASSO λ tuned according to the theory

Parameters: s = 10, N = 353.
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The case of sparse corruptions
Assume an unknown subset of the samples to be corrupted arbitrarily.

e = ebounded + esparse,

where ‖esparse‖0 ≤ k has possibly unbounded entries.

Motivation:
I Large-scale UQ computations are

performed on big clusters.

I Node failures can compromise these
expensive computations.

I Need for fault-tolerant methods.

Decoder: min
z∈CN

‖Az − y‖1 +λ‖z‖1,u (Weighted LAD-LASSO, [Xu, 2005])

If λ �
√

k
sγ and m & sγ · L(s, d , ε), then [Adcock, Bao, S.B., 2017]

‖f − f̃ ‖L∞ . σs,L(x)1,u + sγ/2‖ebounded‖2.
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Future challenges
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Improved sampling strategies

In UQ, sampling is the most computationally expensive part. Hence,
devising methods that need the less samples is crucial.

1. Can we improve the bound m � sγ · L(s, d , ε)?

2. Devise adaptive sampling strategies.
Promising preliminary results in 1D. [Adcock, Boyer, S.B., 2018]

3. The quest for optimal sampling strategies.
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Faster recovery

CS is able to lessen the curse of dimensionality w.r.t. to the number of
samples. However, for large-scale UQ problems, N may become too
large to allow for convex minimization in CN .

Future direction: Adopting greedy strategies to accelerate the
recovery phase.

Preliminary numerical results show the potential of weighted orthogonal
matching pursuit as an alternative to weighted `1 miminization.
[Adcock, S.B., 2018]

Main advantages & opportunities:

I Number of iterations O(s);

I Parallelizability;

I Easily adaptable to structured sparsity.
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