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Outline of Lecture 3

@ The importance of Y

@ "Broken" forms for Laplace & Maxwell equations
@ Verification of [U+1]

Q Verification of [F]
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Designing DPG methods

The game is to reformulate boundary value problems into operator
equations Bx = £ where B : X — Y™ is a continuous linear operator and

|| - || v+ is locally and easily approximable.
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Recall one of the definitions of the DPG method

Exact problem: Given Hilbert spaces X and Y, a continuous linear
operator B: X — Y* and an £ € Y™, solve for x in X satisfying

Bx = /.

Discretization: Pick finite dimensional subspaces X, C X and Y, C Y

and compute
— i e - B *
Xp = arg z'h'e“)rgh | Zn | v;

When Y}, admits functions without interelement continuity, we call this the
DPG method. [G+Demkovvicz 2011]
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Recall one of the definitions of the DPG method

Exact problem: Given Hilbert spaces X and Y, a continuous linear
operator B: X — Y* and an £ € Y™, solve for x in X satisfying

Bx = /.

Discretization: Pick finite dimensional subspaces X, C X and Y, C Y
and compute
X, = arg min || — Bzpl|y=*.
h gzhexh | hHYh

When Y}, admits functions without interelement continuity, we call this the

DPG method. [G+Demkovvicz 2011]
Relatives:
e FOSLS (Y = L2) [Cai +Lazarov+Manteuffel+McCormick 1994]

o Negative-norm least-squares (Y = Hg) [BrambleLazarov+ Pasciak 1997]

Jay Gopalakrishnan 4/32



In what norm will you minimize?

Re(solution) from DPG

Jay Gopalakrishnan

€=1.000000

Experiment: Simulate a plane
wave propagating at § = /8.

Apply DPG minimization in a
relaxed graph norm where [2
terms are scaled by €.
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Dissipation— 0 as ¢ — 0.
[Nicole Olivares 2016] dissertation.
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In what norm will you minimize?

€=0.100000 Experiment: Simulate a plane
: wave propagating at § = /8.

Apply DPG minimization in a
relaxed graph norm where [2
terms are scaled by €.

(XA
W
XXX
G

5
Y

/
g
Wil
‘

Re(solution) from DPG

Dissipation— 0 as ¢ — 0.
[Nicole Olivares 2016] dissertation.
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In what norm will you minimize?

Re(solution) from DPG

Jay Gopalakrishnan

€=0.010000 Experiment: Simulate a plane
: wave propagating at § = /8.

Apply DPG minimization in a
relaxed graph norm where [2
terms are scaled by €.
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Dissipation— 0 as ¢ — 0.
[Nicole Olivares 2016] dissertation.
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In what norm will you minimize?

Re(solution) from DPG
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€=0.001000 Experiment: Simulate a plane
: wave propagating at § = /8.

Apply DPG minimization in a
relaxed graph norm where [2

'N S terms are scaled by €.
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Dissipation— 0 as ¢ — 0.
[Nicole Olivares 2016] dissertation.
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In what norm will you minimize?

e=0.000100 Experiment: Simulate a plane
: wave propagating at § = /8.

Apply DPG minimization in a
relaxed graph norm where [2
terms are scaled by €.

N
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Re(solution) from DPG
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Dissipation— 0 as ¢ — 0.
[Nicole Olivares 2016] dissertation.
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In what norm will you minimize?

e=0.000010 Experiment: Simulate a plane
: wave propagating at § = /8.

Apply DPG minimization in a
relaxed graph norm where [2
terms are scaled by €.

Re(solution) from DPG
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Dissipation— 0 as ¢ — 0.
[Nicole Olivares 2016] dissertation.
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In what norm will you minimize?

e=0.000001 Experiment: Simulate a plane
: wave propagating at § = /8.

Apply DPG minimization in a
relaxed graph norm where [2
terms are scaled by €.

Re(solution) from DPG
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Dissipation— 0 as ¢ — 0.
[Nicole Olivares 2016] dissertation.
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Computational feasibility

Interesting DPG methods arise when
Y, has a basis whose Gram matrix is easy to invert.

o |- [ly; is easily Xh = arg min 1€ — Bzp||yy-
computable. e
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Computational feasibility

Interesting DPG methods arise when
Y, has a basis whose Gram matrix is easy to invert.

o | -[ly; is easily
computable.

o Ty is easily
computable.
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Xp = argzmei)rg 16 — Bzp|| ;-
h h

b(xhay) = e(Y)? y e Th(Xh)

Test space T(Xp) is determined by solving
(Thz,y)y = b(z,y) for all y € Y}, and z € X,
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Computational feasibility

Interesting DPG methods arise when
Y, has a basis whose Gram matrix is easy to invert.

o | -[ly; is easily
computable.

o Ty is easily
computable.

@ ¢ is easily
condensed out.

Jay Gopalakrishnan

Xp = argzmei)r} 16 — Bzp|| ;-
h h

b(xhay) = Z(y)? y e Th(Xh)

Test space T(Xp) is determined by solving
(Thz,y)y = b(z,y) for all y € Y}, and z € X,

(en,y)y + b(xn,y) = ly), Vy € Yh,
b(Zh, eh) =0, Yz, € Xp.
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Recall the 3 assumptions

Let b(x,y) = (Bx)(y), the sesquilinear form on X x Y generated by B.

{y € Y: b(x,y) =0 for all x € X} = {0}.

b
Ja>0: VxeX, alx|x< sup 6Oyl

< [Ib[}{Ix[[x-
ozvey lylly

3 continuous linear IT : Y — Y}, such that

b(zp,y —IIy) =0 for all z, € Xp, y € Y.
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Example: A new weak form for the old Laplacian

) —Au=f, on{2,
Find u:
u=0, ondf

Let £2;, be a mesh of 2 and K € (2, be a mesh element. Then

/gradu-gradv—/ (n~gradu)v:/fv.
K oK K

This allows test function v € Y to be in a “broken” Sobolev space

Y = HY(12) : H HY(K
Ken,

Jay Gopalakrishnan

8/32



Example: A new weak form for the old Laplacian

) —Au=f, on{2,
Find u:
u=0, ondf

Let £2;, be a mesh of 2 and K € (2, be a mesh element. Then

/gradu-gradv—/ (n~gradu)v:/fv.

K oK K

Z [/ grad u - grad v — / n-&v] :/ fv.
K oK [0

Keny,
This allows test function v € Y to be in a “broken” Sobolev space
Y =H 2) = J] HU(K
Ken,
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Primal DPG formulation for Dirichlet problem
b((u,§-n),v) = du-eradv — G-
((u,g-n),v) K;Zh /Kgraugrav /(9Kq nv]
Y = HY(£2)
X = Hy(02) x QW
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Primal DPG formulation for Dirichlet problem

b((u,g-n),v)= Z /gradu-gradv —/ a~nv]
Keny, L7K oK
Y = HY(£2)
X = Hy(02) x QW

Definition (of QY the space where numerical flux § - n lies)

Define the element-by-element trace operator tr, by

tr, : H(div, 2) — H H™Y2(0K), try rlok = r- nlok.

Ke2,

Set Qv = range of tr,. It is complete under the norm

g - n||gav = inf r v )
Hq ”Qd retr-1{g-n} “ ”H(dlv,ﬂ)
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Primal DPG formulation for Dirichlet problem

b( (u’ CAI ! n)v V)

= (grad u, grad v), — (§ - n,v)p
Y = HY(£2)
X = Hy(02) x QW
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Broken and Unbroken forms

Broken form

b((u,g-n),v) = (grad u,grad v),+ (=g - n,v)p

bo(u,v) b(g-n,v)
Y = HY(£2)
X = H}(2) x Q¥

Unbroken form

bo(u, v) = (grad u, grad v)

Stability of the unbroken form on H}(£2) x H3(£2) is standard.

Stability of broken form?

Jay Gopalakrishnan
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Abstracting the structure

Suppose we have two further Hilbert spaces Xy and X such that:

Abstract setting: Dirichlet example:

o Xo = H}(R2), X = Q,
Y = HY(12))
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Abstracting the structure

Suppose we have two further Hilbert spaces Xy and X such that:

Abstract setting:

@ by : Xp x Y — C is sesquilinear and
continuous
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Dirichlet example:

o Xo = H}(R2), X = Q,

Y = HY(12))
e bo(u,v) =
(grad u, grad v)
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Abstracting the structure

Suppose we have two further Hilbert spaces Xy and X such that:

Abstract setting:

@ by : Xp x Y — C is sesquilinear and
continuous

@ b: X xY — C is sesquilinear and
continuous
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Dirichlet example:

o Xo = Hg(£2 )
Y = HY(12))
e by(u,v) =

(grad u, grad v)

o b(g-n,v)=(—

lev
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Abstracting the structure

Suppose we have two further Hilbert spaces Xy and X such that:

Abstract setting:

@ by : Xp x Y — C is sesquilinear and
continuous

@ b: X xY — C is sesquilinear and
continuous

e X =Xy x X.

o b((x,%),y) = bo(x,y) + b(%, y)

Jay Gopalakrishnan

Dirichlet example:

o Xo = H}(R), X = Q,
Y = HY(12))
e bo(u,v) =

(grad u, grad v)

o b( (U, a : n)7 V)
(grad u, grad v)p

—<€I - n, V>h
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Abstracting the structure

Suppose we have two further Hilbert spaces Xy and X such that:

Abstract setting:

@ by : Xp x Y — C is sesquilinear and
continuous

@ b: X xY — C is sesquilinear and
continuous

X =X x X.

o b((x,%),y) = bo(x,y) + b(%, y)

Yo={yeY:bx,y) =0, Vke X}
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Dirichlet example:

o Xo = H}(R), X = Q,
Y = HY(12))
e bo(u,v) =

(grad u, grad v)

o b( (U, a : n)7 V)
= (grad u, grad v)
_<a - n, V>h
o Yo = Hi ().
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From standard to broken forms: An abstract result

Assumption [H] Hybrid form

b(x .
32>0: €H>”<H)A<§sup|(x’y)| V& € X.
vey lylly

(Stability of unbroken form = Stability of broken form)

Suppose Assumption [H] holds. Then

[U + 1] holds for . [U + 1] holds for
by on X x Yo b=by+bon XxY

[Carstensen+ Demkowicz+G 2015]
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Example: Maxwell cavity problem

Assuming all time variations are harmonic (e~"*), the electric (E) and
magnetic (H) fields satisfy

wpuH —curl E =0 on {2
wekE + curl H = J on {2
nx E=0 on 912.

. curl p=t curl E — w?eE = wJ, on 2
Find E:
nx E=0, on 9f2.

If w is not a cavity resonance, then this problem is wellposed.
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Deriving broken and unbroken formulation

Integrate by parts on (2:

/,u_lcurlE-curlF—wst~f+/ nx/flcurlE.fzo
2 an
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Deriving broken and unbroken formulation

Unbroken (standard) formulation Integrate by parts on (2:

Find E € Hp(curl, £2) satisfying

(uteurl E,curl F) — w?(cE, F) = (f, F)
bo(E,F)

for all F € Hp(curl, £2).

/ulcurlE-curlF—w25E~F+/ anflcurlE.fzo
2 an
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Deriving broken and unbroken formulation

Unbroken (standard) formulation Integrate by parts on f2:

Find E € Hp(curl, £2) satisfying

(uteurl E,curl F) — w?(cE, F) = (f, F)
bo(E,F)

for all F € Hp(curl, £2).

Broken formulation Integrate by parts element by element:

Z /ulcurlE-curlF—w25E~F+/ nXuflcurlE-f =0
K ———

oK
Kef2 N
€eh wH
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Deriving broken and unbroken formulation

Unbroken (standard) formulation Integrate by parts on f2:

Find E € Hp(curl, £2) satisfying

(uteurl E,curl F) — w?(cE, F) = (f, F)
bo(E,F)

for all F € Hp(curl, £2).

Broken formulation Integrate by parts element by element:

(p~teurl E,curl F)p — w?(eE, F) + (n x p~tcwl E, F), = (f, F)
N—_——

wH
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Primal DPG formulation for the Maxwell problem

b((E,nx H),F)=(u tcurl E,curl F), — w?(eE, F) 4 w(n x H, F),

Y = H(ewl, 24) = [ H(cwl,K), X = Ho(curl, 2) x Q"
Kef2y
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Primal DPG formulation for the Maxwell problem

b((E,nx H),F)=(u tcurl E,curl F), — w?(eE, F) 4 w(n x H, F),

Y = H(curl, £24) : H H(curl, K), X = Ho(curl, £2) x Q™!
Key,

Definition (of Q°™!, the space where n x H lies)

Define the element-by-element trace operator try by

« tH(ewrl, 2) — [ HY2(div,0K),  trx Flok = n x Flok.
Key,

Q! = range(try), normed by ||n x ,:_”chrl = inf | G| H(cur,2)-

Getry ~1{nxF}
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Fitting to the previous abstract structure

Abstract setting: Maxwell example:

o Xo = Ho(curl, 2), X = Q"

Y = H(curl, 2)
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Fitting to the previous abstract structure

Abstract setting: Maxwell example:

@ by : Xp x Y — C is sesquilinear and ~ '
continuous e Xp = Ho(curl, £2), X = Q"

Y = H(curl, £24)

o by(E,F)=(p teurl E,curl F)y,
—w?(eE, F)
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Fitting to the previous abstract structure

Abstract setting: Maxwell example:

@ by : Xp x Y — C is sesquilinear and

continuous o Xo = Ho(curl, £2), X = Q"

e b: X x Y = C is sesquilinear and Y = H(curl, £2p)

continuous 4
@ by(E,F)=(p ‘curl E,curl F)y

—w?(eE, F)

A A

o b(nx H,F)=w(nxH,F)
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Fitting to the previous abstract structure

Abstract setting: Maxwell example:

@ by : Xp x Y — C is sesquilinear and

continuous o Xo = Ho(curl, £2), X = Q"

e b: X x Y = C is sesquilinear and Y = H(curl, £2p)

continuous 3
e by(E,F)=(pu “curl E,curl F)p
N 2

o X =XoxX w*(eE, F)
° b((X’)?)7y):bO(Xa_)/)‘f‘B()?,y) ° b(nXH’F):Zw<nXH7F>h
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Fitting to the previous abstract structure

Abstract setting: Maxwell example:

@ by : Xp x Y — C is sesquilinear and . '
continuous e Xp = Ho(curl, £2), X = Q"

e b: X x Y = C is sesquilinear and Y = H(curl, £2p)

continuous 4
@ by(E,F)=(u ‘curl E,curl F)y

X =X x X —w?(eE, F)

° b( (X’)?))y) = bO(Xa_)/)‘f‘ B()?,y) ° b(n X H’ F) = Zw<n X H7 F)h

Yo—{yeY:b&y) =0, vke X} © Yo=Holcurl,2).
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Recall the abstract result

Assumption [H] Hybrid form

b(x .
Je>0: EH&HXSSUpM Vi e X.
vey lylly

Theorem (Stability of unbroken form = Stability of broken form)

Suppose Assumption [H] holds. Then

[U + 1] holds for . [U + 1] holds for
by on Xy X Yo b:b0+130nXxY
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Analysis of broken Maxwell and Laplace forms

The last theorem reduces analysis of wellposedness to verification of [H].

[U-+I1] for broken Maxwell form will follow if [H] is proved:

- 1 H,F
|nx H|gewt < < sup [n > A, Finl
€ FeH(curl,£2;) ”FHH(curl,Qh)

[U-+I1] for broken Dirichlet form will follow if [H] is proved:

1 5.
In-gllgas <5 sup 14§ - n, v)al
¢ venr(ay) VI,
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Analysis of broken Maxwell and Laplace forms

The last theorem reduces analysis of wellposedness to verification of [H].

[U-+I1] for broken Maxwell form will follow if [H] is proved:

|(n x H, F)4l
sup ot
FeH(curl,2;) ”FHH(curl,Qh)

o =

inf H = ({n X I:I curl S
Hetry—1{nx ) H “H(Curl,()) “ ”Q

[U-+I1] for broken Dirichlet form will follow if [H] is proved:

i 1 |<a - n, V>h|
inf HrHH div.Q) — Hn?7|| div S = sup _———
retry-1{gny V) Q € verr(ay) IVIimay
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Interface (inf=sup) lemma

[(n x H, F)|
FeH(curl,2) ||F||H(Curl,.Qh)

inf [FllHeurt,2) = sup
Fetry —HnxH}
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Interface (inf=sup) lemma

[(n x H, F)|
FeH(curl,2) ||F||H(curl,9h)

inf [FllHeurt,2) = sup
Fetry —HnxH}

Interpreting the lemma for a one element mesh:

e Two types of traces of F € H(curl, K) on one element boundary:

try F = nx Flak, trTF:(an)xn|aK.
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Interface (inf=sup) lemma

[(n x H, F)|
FeH(curl,2) ||F||H(curl,.Qh)

inf [FllHeurt,2) = sup
Fetry —HnxH}

Interpreting the lemma for a one element mesh:

e Two types of traces of F € H(curl, K) on one element boundary:
try F = nx Flak, trTF:(an)xn|aK.

e Range(try) = H™Y/2(div, dK). Range(tr+) = H~Y?(curl, K).
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Interface (inf=sup) lemma

[(n x H, F)|
FeH(curl,2) ||F||H(curl,(lh)

inf [FllHeurt,2) = sup
Fetry —HnxH}

Interpreting the lemma for a one element mesh:

e Two types of traces of F € H(curl, K) on one element boundary:
try F = nx Flak, trTF:(an)xn|aK.
e Range(try) = H™Y/2(div, dK). Range(tr+) = H~Y?(curl, K).

o Lemma = theinf = ||n x I:/HH—1/2(diV7aK) = the sup =

_ |<n X I:Ia FT>h|
= sup
FreH~1/2(curl,0K) HFTHH*l/Z(curl,@K)

= ||I7 x HH[H_1/2(curl,8K)]*'
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Interface (inf=sup) lemma

[(n x A, F)|

FeH(curl,2y) IIFlH(curt,2,)

inf [FllHeurt,2) = sup
Fetry —HnxH}

= The lemma, on one element K, says that the norms of
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Interface (inf=sup) lemma

[(n x H, F)|
FeH(curl,2) ||F||H(curl,(lh)

inf [FllHeurt,2) = sup
Fetry —HnxH}

Proof:

Given n x H on element boundary 0K, solve these:

Find H € H(curl, K): Find G € H(curl, K):
nxH=nxH, on 0K, nxcurlG=nxH, ondK,
curlcurl H+ H=0, in K. curlcurl G+ G =0, in K.

One is related to the “inf” and the other is related to the “sup”...

Jay Gopalakrishnan
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Proof (continued)

Find H € H(curl, K): Find G € H(curl, K):
nx H=nxH, on 0K, nxcurl G=nxH, ondK,
curlcurl H+ H=0, in K. curlcurl G + G =0, in K.

etrx ~1{nxH

HHHH(curl,K) = F inf }HFHH(curl,K) =: INF.
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Proof (continued)

Find H € H(curl, K): Find G € H(curl, K):
nx H=nxH, on 0K, nxcurl G=nxH, ondK,
curlcurl H+ H=0, in K. curlcurl G + G =0, in K.

etrx ~1{nxH
curl G, curl F)x + (G, F)k
HG”H(curl,K) = sup ’( F ) ( ) ‘
FeH(curl,K) ” HH(curl,K)
[(n x A, F)|

= sup ——— =:SUP.
FeH(curl,K) ||F||H(Curl,K)

HHHH(curl,K) = F inf }HFHH(curl,K) =: INF.
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Proof (continued)

Find H € H(curl, K): Find G € H(curl, K):
nx H=nxH, on 0K, nxcurl G=nxH, ondK,
curlcurl H+ H=0, in K. curlcurl G + G =0, in K.

etrx ~1{nxH
curl G, curl F)x + (G, F)k
HG”H(curl,K) = sup ’( F ) ( ) ‘
FeH(curl,K) ” HH(curl,K)
[(n x A, F)|

= sup ——— =:SUP.
FeH(curl,K) ||F||H(Curl,K)

HHHH(curl,K) = F inf }HFHH(Curl,K) =: INF.

Now, H = curl G
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Proof (continued)

Find H € H(curl, K): Find G € H(curl, K):
nx H=nxH, on 0K, nxcurl G=nxH, ondK,
curlcurl H+ H=0, in K. curlcurl G + G =0, in K.

etrx ~1{nxH
curl G, curl F)x + (G, F)k
HG”H(curl,K) = sup ’( F ) ( ) ‘
FeH(curl,K) ” HH(curl,K)
[(n x A, F)|

= sup ——— =:SUP.
FeH(curl,K) ||F||H(Curl,K)

HHHH(curl,K) = F inf }HFHH(Curl,K) =: INF.

NOW, H = curl G and HHHH(curl,K) = ”GHH(curl,K) = INF = SUP.
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Summary of the technique

@ Prove wellposedness (verify [U+1] of the unbroken often standard —
formulation.

@ Prove an “inf=sup” lemma to verify [H].

e Conclude the wellposedness [U+I1] of the broken formulation by our
abstract theorem.
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Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:
@ Ready-made error estimator for spacetime adaptivity.
@ Previous technique can be used to prove wellposedness.
t

19| — |9r — grad,p
1 Oepr — divyq

Adaptive iterate 0
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Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:

@ Ready-made error estimator for spacetime adaptivity.

@ Previous technique can be used to prove wellposedness.
t

19| — |9r — grad,p
1 Oepr — divyq

Adaptive iterate 5
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Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:
@ Ready-made error estimator for spacetime adaptivity.
@ Previous technique can be used to prove wellposedness.
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Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:
@ Ready-made error estimator for spacetime adaptivity.
@ Previous technique can be used to prove wellposedness.
t

19| — |9r — grad,p
1 Oepr — divyq

Adaptive iterate 15
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Spacetime DPG formulations are wellposed

The DPG methodology is well-suited to spacetime problems:
@ Ready-made error estimator for spacetime adaptivity.
@ Previous technique can be used to prove wellposedness.
t

19| — |9r — grad,p
1 Oepr — divyq

Adaptive iterate 20
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The lemma’s idea can extended far

Find H € H(curl, K): Find G € H(curl, K):
an:nXI:I, on 0K, nxcurlG:an:I, on 0K,
curlcurl H+ H=0, in K. curlcurl G+ G =0, in K.

Find H e W(K) : Find G € W*(K):

DH = g, on OK, DA*G = g, on 0K,
AAH+H=0, inK. AA"G+ G =0, inK.

[Ad]i = 0% (ajja ;). Operator A generalizes curl.

W(K)={uel®: Aue *}. W(K) generalizes H(curl, K).

(Dw, w")w+ = (Aw, w") — (w, A"w"). ' D generalizes n x -|ok.

INF = SUP

(for much more general operators)

[Demkovvicz +G+Nagaraj+Sepulveda 2017]
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Next

@ Theimportance of Y ... .. . v
@ "Broken” forms for Laplace & Maxwell equations ................ v
@ Verification of [U4] ......... ... v

© \Verification of [F]
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Recall the third assumption

{y € Y: b(x,y) =0 for all x € X} = {0}.

b
dap >0: VxeX, allxllx < sup |b(x, y)|
ovey Iyl

< |Ib]}{Ix[1x-

3 continuous linear IT : Y — Y}, such that

b(zp,y —IIy) =0 for all z, € Xp, y € Y.
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Example: Discrete spaces for 3D Laplace case

b((u,g-n),v)=(grad u,grad v), — (g - n,v)p
Y = HY(£2)
X = H}(£2) x QI

Given an Xj, we want a discrete space Y}, satisfying Assumption [F]:

0= b((wh, ?p-n),v—1IIv)
= —(Awp,v —IIv)p+ (n-grad wp — P - n,v — ITv)p.

If degree(wn|k) < p + 1 and degree(?, - n) < p, then moment conditions

(Pp_l(K),V — HV)K =0 (needed for Laplace example)
<n . Rp_|_1(K)7V — HV)aK: 0 (needed for Laplace example)

are sufficient.
26/32
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Fortin operators with moment conditions

For Maxwell, and other applications, we need continuous linear operators

575 HY(K) = Ppas(K),

12 Heur], K) = Ny (K),

: H(div, K) = Rp43(K),
satisfying these moment conditions on a tetrahedral element:

(needed for Laplace example)

(Pp1(K), T8 v = v)

(n- Roy1(K), 1835 v = v)
(Pp(K).II,Y5E — E)

(n % Pp1(K) IT51SE — E)
(Ppi1(K)3, T—7) =0

(n Ppi2(K), T—71) =0

(needed for Laplace example)

0
0
0
0

Jay Gopalakrishnan
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Fortin operators with moment conditions

Theorem [

On any tetrahedron K, there are continuous linear operators
gy - HY(K) = Ppys(K),
1155 H(curl, K) = Npys(K),

1107 H(div, K) = Rpr3(K),

such that the diagram

HYK)/R 2% H(eurl, K) —s H(div, K) -2 [2(K)

d url div
| s | st | s | vz
grad curl div

Posa(K)/R 205 Npa(K) —5 Rppa(K) 2 Ppua(K)

commutes and the moment conditions of the previous slide hold.
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The DPG method for the Dirichlet problem

b((u,g-n),v)=(gradu,grad v), — (g - n, v)p

Y = H'($25)

X = H}(2) x Q¥

Yi={y €Yyl € Pp3(K)}

Xp={ (Wh, P - n) € X 1 whlk € Poy1(K), Palk € Ror1(K) }

We have indicated how to verify [U + | 4+ F] in this setting.
Hence a priori and a posteriori error estimates follow.
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The DPG method for the Maxwell problem

b((E,nx H),F)=(p tcurl E,curl F)p — w?(eE, F) 4+ w(n x H, F),
Y = H(curl, £25)

X = H(curl, 2) x Q!

Yo ={F €Y :Flk € Np3(K)}

Xy ={(E,nx H) € X : E|x € Py(K)*, H|x € Pp1(K)*}

We have indicated how to verify [U + | + F] in this setting.
Hence a priori and a posteriori error estimates follow.
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The DPG method for spacetime problems

e Discussed techniques are useful to prove [U + 1] also for many
spacetime operators (wave, Schrodinger, etc.)

@ However, verification of [F] is an open problem for spacetime
operators.
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Conclusion of Lecture 3

@ Theimportance of Y ... . v
@ "Broken” forms for Laplace & Maxwell equations ................ v
@ Verification of [U41] ... ... v
@ Verification of [F] ... ... v
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