

Smart energy system - combining EE & RE

Arne Remmen

ar@plan.aau.dk

Department of Development and Planning

Aalborg University

Climate change

- Change in global average temperature:
 12 of the warmest years have been
 in the past 13 years (since 1850)
- Melting glaciers
- Ice at Artic and Antartic is melting
- Warming up of sea (hurricanes)
- More extreme weather
- Raise of sea level
- Loss of species /biodiversity
- Lack of clean water in some countries
- Health problems

Global warming is caused by burning of fossil fuels = Green House Gas emissions

Sandy was here!

Climate adaptation

versus

Climate mitigation

Point of departure

- I) Smart grid + (infrastructure)
- 2) Smart technologies + (clean tech)
- 3) Smart people + (competences)
- 4) Smart governance (policy)
- = Smart energy system (smart communities)

How to image a transition towards a smart energy system?

Production

The linear energy system of the industrial society

Distribution

Consumption

From central to distributed energy system

1985

- Centralt kraftvarmeværk
- Decentralt kraftvarmeværk
- Vindmølle
- Havvindmølle
 - Udlandsforbindelse (vekselstrøm)
 - Udlandsforbindelse (jævnstrøm)

Central CHP
Local CHP
Wind
Off-shore wind
AC Interconnection
DC interconnection

From central to distributed energy system

2013

- Centralt kraftvarmeværk
- Decentralt kraftvarmeværk
- Vindmølle
- Havvindmølle
 - Udlandsforbindelse (vekselstrøm)
 - Udlandsforbindelse (jævnstrøm)

Central CHP
Local CHP
Wind
Off-shore wind
AC Interconnection
DC interconnection

Changes in infrastructures

- From linear (supply to demand) towards interactive (smart gridS)
- From few central plants to plenty decentral and distributed units

Challenges:

- The siloes sector integration
- Coordination and communication

More Efficiency and More Renewables

Source: Energy Strategy 2050 Danish Government, 2011.

Figure 2.1. Energy consumption and renewable energy 2009. Source: Danish Energy Agency

Electricity consumption of household appliances

Household electrical appliances

Development of Vestas turbines

Changes in technologies

- From fossil based system towards renewables
- From inefficient products to energy savings and clean technologies

Challenges:

- Fluctuation energy storage
- Rebound effect efficient, but more products
- Energy efficiency versus resource and system efficiency

Riisager & the Tvind wind turbines

Social Movements against and for different technologies

OOA – Oplysning om Atomkraft

OVE – Oplysning om Vedvarende Energi

Danish export of energy technology

People matter

- Renewables / scaling-up learning-by-doing
- Local entrepreneurs and ownership
- Vestas and Bonus/Siemens WP was originally manufacturers of equipment to farmers
- Employment and (rural) community benefits

Challenges:

- Change in competences
- Smart/intelligent user benefits?
- Keep local ownership

Windpower capacity and its share of Danish electricity supply

Policy matters

- Broad public support
- All political parties (-1) behind agreement
- EE + RE is important to the Danish economy
- EU policies + International agreements

Challenges:

- Keep up momentum
- Financing via energy "tax" or public taxes
- Electrification of new sectors eg. transport

Energy system of the Internet society

I) Demand side becomes also production

- Energy+ houses (passive houses / ZNE buildings)
- Electric vehicles (use and produce electricity)
- Energy efficient products and technologies
- From consumers to prosumers

2) Renewable energy sources

- Sun, wind, wave, tidal, biogas, biomass, etc. (several thousands)
- CHP combined heat and power (several hundreds) on RE
- Waste incineration (to power and heat/cooling)

3) From Distribution to Integrated Smart GridS

- An "Intelligent" System adjust energy use to energy production
- Dynamic prices depending on peak hours, etc.
- The two-way energy system of the "internet age"

Smart energy system = Integration

Smart technologies

Energy harvesting, renewable energy sources
Active buildings, plus-energy-buildings
Polygeneration

Energy storage (power to gas, etc.)

Resource-efficient products (eco-design)

Smart energy grids

E-Mobility and integration into grid

Heating and cooling networks

Intelligent energy management, load transfers,

demand side management

Hans Günther Schwarz, 2012

Smart Cities = Bringing in People

Smart people

New competences on new technologies

Active experimentation and learning

Feed-back interfaces to users

Integrative simulation and monitoring tools

Smart governance

Local participation Living labs

I:I demonstrations models

Quadruple helix collaboration (Citizens, Industry, Government and Universities)

Interactive innovation processes

Sustainable business models

CO2 emissions from energy consumption

CO₂ emissions in end-use of energy

Energy consumption for heating in dwellings

